Algorithmically on vertices that belong to all, some and no minimum dominating set in a tree

Radosław Ziemann $^{(1)},$ Paweł Żyliński $^{(1)}$

(1) University of Gdańsk, 80-308 Gdańsk, Poland

A subset D of V_G is said to be a dominating set of a graph $G = (V_G, E_G)$ if each vertex in the set $V_G \setminus D$ has a neighbour in D. The (independent) domination number of G, denoted by $\gamma(G)$ (resp., by $\gamma_i(G)$), is defined to be the minimum cardinality of a (independent) dominating set D of G, and any minimum (independent) dominating set of G is referred to as a γ -set (resp., as a γ_i -set).

We propose a linear time algorithm for determining the sets of vertices that belong to all, some and no minimum dominating set of a tree, respectively, thus improving the quadratic time algorithm of Benecke and Mynhardt in 2008 [S. Benecke, C.M. Mynhardt, Trees with domination subdivision number one, Australasian Journal of Combinatorics 42, 201-209 (2008)].

Our result immediately implies the following corollaries: For any tree T, the following problems are solvable in linear time and space: (A) The problem of verifying whether T is γ -excellent; (B) The problem of verifying whether $\operatorname{sd}_{\gamma}(T) = 1$; (C) The problem of verifying whether $\operatorname{sd}_{\gamma_i}(T) = 1$. Recall that for a given graph parameter μ , the μ -subdivision number sd_{μ} is defined to be the minimum number of edges that must be subdivided to change μ , where each edge may be subdivided at most once.