
10th Cracow Conference on Graph Theory

Labelings of Graphs

Book of abstracts

Cracow, September 22-26, 2025

https://10ccgt.agh.edu.pl/

List of talks

Sylwia Cichacz, Group distance magic cubic graphs	3
KSENIJA ROZMAN, Self-reverse distance magic labeling	4
Laurin Schwartze, Pushing for Irregularity	5
BARBARA STOŁOWSKA, On rainbow caterpillars	6

Group distance magic cubic graphs

S. Cichacz⁽¹⁾, Š. Miklavič^(2,3)

- (1) AGH University of Krakow, Poland
- (2) Andrej Marušič Institute, University of Primorska, Koper, Slovenia
- $^{(3)}$ Institute od mathematics, physics and mechanics, Ljubljana, Slovenia

A Γ -distance magic labeling of a graph G=(V,E) with |V|=n is a bijection ℓ from V to an Abelian group Γ of order n, for which there exists $\mu \in \Gamma$, such that the weight $w(x)=\sum_{y\in N(x)}\ell(y)$ of every vertex $x\in V$ is equal to μ . In this case, the element μ is called the magic constant of G. A graph G is called a group distance magic if there exists a Γ -distance magic labeling of G for every Abelian group Γ of order n.

In this talk, we focus on cubic Γ -distance magic graphs as well as some properties of such graphs.

This work was partially supported by program "Excellence initiative – research university" for the AGH University.

Self-reverse distance magic labeling

P. Kovář⁽¹⁾, K. Rozman^(2,3), P. Šparl^(2,4,5)

- (1) Department of Applied Mathematics, VSB, Ostrava, Czech Republic
- (2) IMFM, Ljubljana, Slovenia
- (3) UP FAMNIT, Koper, Slovenija
- (4) UL PEF, Ljubljana, Slovenia
- (5) UP IAM, Koper, Slovenija

According to a nonstandard definition introduced in 2021, a distance magic labeling ℓ of a regular graph of order n is a bijection from its vertex set to the set of integers of the arithmetic progression from 1-n to n-1 with common difference 2, such that the sum of the labels of the neighbors of each vertex is zero. Such a labeling is called *self-reverse* if, for any pair of vertices u and v, u is adjacent to v if and only if the vertices with labels $-\ell(u)$ and $-\ell(v)$ are adjacent.

In this talk, we present the motivation for studying self-reverse distance magic labelings. We focus on self-reverse distance magic labelings in the case of tetravalent graphs providing several examples and a complete classification of all orders for which a tetravalent graph admitting such a labeling exists. The classification is obtained via a novel construction that produces a (tetravalent) distance magic graph from two given (tetravalent) distance magic graphs. We also discuss the existence of graphs admitting a self-reverse distance magic labeling among some well-known families of tetravalent graphs.

Pushing for Irregularity

D. Rautenbach⁽¹⁾, L. Schwartze⁽¹⁾, F. Werner⁽¹⁾

(1) Ulm University, Ulm, Germany

Let G be a simple graph with maximum degree $\Delta(G)$ and no component of order 2. Bensmail, Marcille, and Orenga [1] introduce the notion of a pushing scheme $\rho: V(G) \to \mathbb{N}_0$ with induced edge labeling

$$\ell: E(G) \to \mathbb{N}, \quad uv \mapsto 1 + \rho(u) + \rho(v).$$

 ρ should be chosen such that the induced vertex labeling

$$\sigma: V(G) \to \mathbb{N}_0, \quad v \mapsto \sum_{u \in N_G(v)} \ell(uv)$$

is a proper vertex coloring. Bensmail et al. conjecture that such a

 $\rho: V(G) \to \{0, 1, \dots, \Delta(G)\}$ exists for every graph G. We prove their conjecture for a few graph classes [2].

References

- [1] J. Bensmail, C. Marcille, and M. Orenga, Pushing Vertices to Make Graphs Irregular, hal-04810955.
- [2] D. Rautenbach, L. Schwartze, F. Werner, Coloring by Pushing Vertices, 2025, https://arxiv.org/abs/2505.05252.

On rainbow caterpillars

S. Cichacz⁽¹⁾, <u>B. Stołowska⁽¹⁾</u>, M. Woźniak⁽¹⁾

(1) AGH, Krakow, Poland

Given a finite Abelian group (A, +), consider a tree T with |A| vertices. The labeling $f: V(T) \to A$ of the vertices of some graph G induces an edge labeling in G, thus the edge uv receives the label f(u) + f(v). The tree T is A-rainbow colored if f is a bijection and edges have different colors. In this paper, we give necessary and sufficient conditions for a caterpillar with three spine vertices to be A-rainbow, when A is an elementary p-group.

References

- [1] C. Delorme, Cayley digraphs and graphs, European Journal of Combinatorics 34(8) (2013) 1307–1315.
- [2] M. Hovey, A-cordial graphs, Discrete Math., 93 (1991) 183– 194.
- [3] R.E. Jamison, W.B. Kinnersley, *Rainbow spanning trees in abelian groups*, Journal of Algebraic Combinatorics 56 (2022) 5–21.
- [4] R. Patrias, O. Pechenik, *Path-cordial abelian groups*, Austral. J. Comb. 80(1) (2021) 157–166.