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Gauss words and rhythmic canons

Jarosław Grytczuk(1)

(1) Warsaw University of Technology, Warsaw, Poland

A rhythmic canon is a combinatorial structure consisting of
repeating copies of the same motif. These copies may be vari-
ously transformed and their placement on the time-line can also
be quite arbitrary. Thus, a purely abstract rhythmic canon can
be identified with an ordered hypergraph on the set of vertices
{1, 2, . . . , n} whose edges correspond to the transformed copies
of the leading motif. If the edges partition the set of vertices (a
hypergraph is a perfect matching), then it is convenient to repre-
sent the canon by a word with same letters occupying positions
of a fixed copy of the motif. If all copies are of the same size
(a hypergraph is uniform), then each letter in the word occurs
the same number of times. Words with this property are called
Gauss words, in honor of the researcher who first used them in
studying self-crossing curves on the plane.

There are many exciting problems about rhythmic canons. I
will present a few of them during the talk. To get a foretaste, con-
sider the following puzzle invented by Tom Johnson, a composer.
Take a look at the word

ABCDCBCADBEEEDA.

It is an example of a perfect rhythmic canon K(5, 3), that is,
a tiling of the interval into five 3-term arithmetic progressions,
each with a distinct gap. There are no such canons with two,
three, four or six progressions, but it is known that K(n, 3) exist
for all 7 ⩽ n ⩽ 19. In particular, there are 9257051746 different
canons K(19, 3). Is it true that for every n ⩾ 7 there is at least
one perfect rhythmic canon K(n, 3)? Perfect canons K(n, 4),
built of 4-term arithmetic progressions of pairwise different gaps,
are known to exist for all 15 ⩽ n ⩽ 23. In particular, there
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are 19490 different canons K(23, 4). What about canons K(n, r)
with r ⩾ 5? Do they exist for every fixed r and arbitrarily large
n?
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On b-acyclic chromatic number of cubic and
subcubic graphs

M. Anholcer(1), S. Cichacz(2), I. Peterin(3)

(1) Poznań University of Economics and Business, Poznań, Poland
(2) AGH University of Krakow, Cracow, Poland
(3) University of Maribor, Maribor, Slovenia

Let G be a graph. An acyclic k-coloring of G is a map c :
V (G) → {1, . . . , k} such that c(u) ̸= c(v) for any uv ∈ E(G)
and the subgraph induced by the vertices of any two colors i, j ∈
{1, . . . , k} is a forest. If every vertex v of a color class Vi misses
a color ℓv ∈ {1, . . . , k} in its closed neighborhood, then every
v ∈ Vi can be recolored with ℓv and we obtain a (k − 1)-coloring
of G. If a new coloring c′ is also acyclic, then such a recoloring
is an acyclic recoloring step and c′ is in relation ◁a with c. The
acyclic b-chromatic number Ab(G) of G is the maximum number
of colors in an acyclic coloring where no acyclic recoloring step is
possible. Equivalently, it is the maximum number of colors in a
minimum element of the transitive closure of ◁a. In this talk, we
develop the results presented in [1] by considering Ab(G) of cubic
and subcubic graphs.

References

[1] M. Anholcer, S. Cichacz, I. Peterin, On b-acyclic chromatic
number of a graph. Comp. Appl. Math. 42, 21 (2023).
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First-Fit Coloring of Forests in Random
Arrival Model

B. Bosek(1,2), G. Gutowski(1), M. Lasoń(3), J. Przybyło(4)

(1) Institute of Theoretical Computer Science, Faculty of Mathematics
and Computer Science, Jagiellonian University, Kraków, Poland
(2) Institute of Informatics, University of Warsaw, Poland
(3) Institute of Mathematics of the Polish Academy of Sciences, Warszawa,
Poland
(4) AGH University of Krakow, Faculty of Applied Mathematics, Kraków,
Poland

We study the performance of the First-Fit coloring algorithm
on forests in the random arrival model. While this algorithm is
known to use Θ(log n) colors in the worst-case (adversarial) on-
line model, its average-case performance under a random vertex
permutation has been less understood.

We close this gap by providing tight asymptotic bounds. We
show that for any forest with n vertices, the expected number of
colors used by First-Fit is at most (1 + o(1)) lnn

ln lnn
. Furthermore,

we prove this bound is optimal by constructing a family of forests
that requires (1 − o(1)) lnn

ln lnn
colors in expectation. Our result

precisely characterizes the performance of First-Fit for this graph
class, showing a modest but significant gain over the adversarial
setting.

References

[1] B.Bosek, G.Gutowski, M.Lasoń, J.Przybylo, First-Fit Color-
ing of Forests in Random Arrival Model. MFCS 2024, 33:1-
33:10.
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On the distinguishing chromatic number in
hereditary graph classes

C. Brause(1,2), R. Kalinowski(2), M. Pilśniak(2), I. Schiermeyer(1,2)

(1) TU Bergakademie Freiberg, Freiberg, Germany
(2) AGH University of Krakow, Kraków, Poland

The distinguishing chromatic number of a graph G, denoted
by χD(G), is the minimum number of colours in a proper vertex
colouring of G that is preserved by the identity automorphism
only. Collins and Trenk proved χD(G) ≤ 2∆(G) for any con-
nected graph G, and that equality holds for complete balanced
bipartite graphs Kp,p and for C6.

In this talk, we show that the upper bound on χD(G) can be
substantially reduced if we forbid some small graphs as induced
subgraphs of G, that is, we study the distinguishing chromatic
number in some hereditary graph classes.
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Packing List-Colorings and the Proper
Connection Number of Connected Graphs

Sebastian Czerwiński(1)

(1) University of Zielona Góra, Institute of Mathematics, Poland

The proper connection number of a connected graph G is the
minimum number of colors t required for a proper connected t-
coloring of G; that is, an edge coloring of G such that between
every pair of distinct vertices there exists a properly colored path.

We also consider list and list-packing versions of this number.
Given a list L-edge-assignment of G, with |L| = k, an L-packing
proper connected coloring of G is a collection of k mutually dis-
joint proper connected colorings c1, c2, . . . , ck of the edges of G;
that is, these colorings satisfy the conditions that for every ver-
tex v ∈ V (G) we have ci(v) ∈ L(v), and ci(v) ̸= cj(v) whenever
i ̸= j.

We discuss the origin of list-packing colorings and provide
new results on this topic.

9



Interval colouring of oriented graphs

Ewa Drgas-Burchardt(1)

(1) University of Zielona Góra, Zielona Góra, Poland

An oriented graph is interval colourable if it admits an arc
colouring with integers such that, for every vertex, the integers
assigned to the in-arcs incident to this vertex are pairwise dis-
tinct, the integers assigned to the out-arcs incident to this vertex
are also pairwise distinct, and both of these sets form intervals
of integers. Since there exist oriented graphs that are not in-
terval colourable, we analise the interval colouring reorientation
number of an oriented graph D, denoted by icr(D), defined as
the minimum number of arcs of D that should be reversed so
that a resulting oriented graph is interval colourable.

In this talk, we present properties and constraints of the in-
terval colouring reorientation number, as well as its connections
to other well-known parameters studied in the theory of graphs
and digraphs.

References

[1] M.Borowiecka-Olszewska, E.Drgas-Burchardt, R.Zuazua, On
interval colouring reorientation number of oriented graphs,
Discrete Appl. Math. 2025 pp.65-80.
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Totally Locally Irregular Decompositions of
Graphs

Anna Flaszczyńska(1), Aleksandra Gorzkowska(1), Igor Grzelec(1),
Alfréd Onderko(2), Mariusz Woźniak(1)

(1) AGH University, Cracow, Poland
(2) P.J. Šafárik University, Košice, Slovakia

A locally irregular graph is a graph in which all adjacent ver-
tices have distinct degrees. In article [1], the authors described
the minimum number of locally irregular subgraphs into which a
graph can be decomposed. This can be viewed as a graph color-
ing, where each color corresponds to a locally irregular subgraph.
In [1], a total version of this problem is also defined.

In the problem of totally locally irregular decomposition of
graphs, we aim to find the minimum number of colors in a to-
tal coloring of the graph such that, within each color class, all
adjacent vertices have distinct total degrees.

References

[1] O. Baudon, J. Bensmail, J. Przybyło, M. Woźniak, On de-
composing regular graphs into locally irregular subgraphs, Eu-
ropean Journal of Combinatorics, 2015, 49, pp. 90–104.
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Packing coloring of graphs with long paths

H. Furmańczyk(1), D. Gözüpek(2), S. Özkan(2)

(1) University of Gdańsk, Gdańsk, Poland
(2) Gebze Technical University, Gebze, Turkey

A packing coloring of a graph G is a mapping c : V (G) → N
such that any two distinct vertices assigned color i are at distance
greater than i in G. This generalizes classical proper coloring by
incorporating distance constraints that grow with the color index.
The smallest integer k for which such a coloring exists using colors
1, . . . , k is called the packing chromatic number, denoted χp(G).

We define a new class of graphs called path-aligned graph prod-
ucts, denoted by Pn♢lG. Let n and l be positive integers such
that l | n, and let G be a connected vertex-transitive graph that
contains a path Pl as a subgraph.The graph Pn♢lG is constructed
as follows.

• Start with the path Pn, with vertex sequence v1, v2, . . . , vn.

• Partition Pn into n/l consecutive, disjoint subpaths of length
l, i.e., the i-th subpath is P

(i)
l = (v(i−1)l+1, . . . , vil) for i =

1, 2, . . . , n/l.

• For each i, take a copy G(i) of the graph G, and identify
the subpath P

(i)
l ⊆ Pn with a fixed copy of Pl ⊆ G(i). That

is, the vertices of P (i)
l are merged with the corresponding

vertices of the embedded path Pl in G(i).

We investigate the packing chromatic number χp of such con-
structions for various choices of G, including cycles and complete
graphs, and determine exact values or bounds in these cases. Fur-
thermore, we extend our results to selected classes of corona prod-
ucts, including generalized coronas, which share similar align-
ment properties.
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Odd Coloring: Complexity and Algorithms

Rumki Ghosh(1), B. S. Panda(1)

(1) Department of Mathematics, Indian Institute of Technology Delhi,
Hauz Khas, New Delhi 110016, INDIA

An odd k-coloring of a graph G = (V,E) is a proper k-coloring
of G such that for every non-isolated vertex v ∈ V , there exists
at least one color that appears an odd number of times in the
open neighborhood of v. The minimum k for which G admits
an odd k-coloring is called the odd chromatic number of G and
is denoted by χo(G). Given a graph G and a positive integer
k, Decide Odd Coloring Problem is to decide whether G
admits an odd k-coloring. Decide Odd Coloring Problem
is known to be NP-complete for general graphs [1]. In this paper,
we strengthen this hardness result by proving that Decide Odd
Coloring Problem remains NP complete for dually chordal
graphs. On the positive side, we prove that for any proper interval
graph G, the odd chromatic number satisfies ω(G) ≤ χo(G) ≤
ω(G) + 1. We further characterize the proper interval graphs
for which χo(G) = ω(G), and those for which χo(G) = ω(G) + 1.
We present a linear-time algorithm to compute the odd chromatic
number of block graphs. Finally, we prove that the odd chromatic
number of an interval graph G is either ω(G) or ω(G)+1. Further,
we characterize the interval graphs having χo(G) = ω(G) and
χo(G) = ω(G) + 1.

References

[1] Yair Caro, Mirko Petruševski, Riste Škrekovski, Remarks on
Odd Coloring of Graphs, Discrete Applied Mathematics, 321:
392-401, 2022.
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Computational and algebraic approaches to
open XOR-magic graphs

Sylwia Cichacz(1), Hubert Grochowski(2), Rita Zuazua(3)

(1) AGH University of Kraków, Kraków, Poland
(2) Warsaw University of Technology, Warsaw, Poland
(3) Universidad Nacional Autónoma de México, Mexico

A graph G = (V,E) with |V | = 2n is called (open) XOR-
magic graph, if it is connected and there exists a bijective labeling
ℓ : V → (Z2)

n such that for each vertex v ∈ V , sum of labels over
(open) closed neighborhood of v is equal to 0. This labeling is a
special case of group distance magic labeling of graphs.

Batal posed the following open problem: does it exist any
even regular XOR-magic or odd regular open XOR-magic graph?
In this talk, we will present positive answers to these questions,
as well as a generalization about the existence of such graphs of
order 2n for each n ≥ 4. Furthermore, we will present obtained
algebraic approach to non-existence of open XOR-magic labelings
and its application to various classes of circulant graphs.

Hubert Grochowski’s research was funded by the Warsaw Uni-
versity of Technology within the Excellence Initiative: Research
University (IDUB) programme.

References

[1] D. Froncek, Group distance magic labeling of of Cartesian
products of cycles, Australasian Journal of Combinatorics 55
(2013) 167–174.

[2] M. Anholcer, S. Cichacz, D. Froncek, R. Simanjuntak, J.
Qiu, Group distance magic and antimagic hypercubes, Discrete
Mathematics 344 (2021) 112625.

[3] A. Batal, On the construction of xor-magic graphs, preprint.
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Weak and strong local irregularity of digraphs

I. Grzelec(1), A. Onderko(2), M. Woźniak(1)

(1) AGH University of Krakow, Kraków, Poland
(2) P.J. Šafárik University, Košice, Slovakia

Local Irregularity Conjecture states that every connected
graph, except special cacti, can be decomposed into at most three
locally irregular graphs, i.e., graphs in which adjacent vertices
have different degrees [1, 2]. The notion of local irregularity was
defined for digraphs in several different ways. At the beginning of
this talk we present the already known concepts of local irregu-
larity for digraphs with motivations, main conjectures and known
results. Then we introduce the following new methods of defining
a locally irregular digraph. The first one, weak local irregularity,
is based on distinguishing adjacent vertices by indegree-outdegree
pairs, and the second one, strong local irregularity, asks for differ-
ent balanced degrees (i.e., difference between the outdegree and
the indegree of a vertex) of adjacent vertices. For both of these
irregularities, we define locally irregular decompositions and col-
orings of digraphs. We also provide related conjectures on the
minimum number of colors in weak and strong locally irregular
colorings and support them with new results for various classes
of digraphs.

References

[1] O. Baudon, J. Bensmail, J. Przybyło, M. Woźniak, On decom-
posing regular graphs into locally irregular subgraphs, Europ.
J. Combin., 49 (2015), 90–104.

[2] J. Sedlar, R. Škrekovski, Local Irregularity Conjecture vs.
cacti, Discrete Appl. Math. 343 (2024), 115–133.
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Majority Additive Coloring

Mateusz Kamyczura(1)

(1) AGH University, Cracow, Poland

Majority additive coloring is a type of coloring where each
vertex is assigned a number, and the sum of its neighbors’ num-
bers, called the neighbor sum, is then computed. For the coloring
to be valid, in the neighborhood of each vertex, at most half of
its neighbors can share the same neighbor sum. Therefore, ma-
jority additive coloring is a combination of two known problems:
additive coloring and majority coloring. The majority additive
chromatic number, denoted by χmac(G), is the smallest number
of colors required to achieve a majority additive coloring of G.
We present several results regarding χmac for different types of
graphs. For complete graphs and cycles, we have determined the
exact value of the parameter, while for trees, we have found a
tight upper bound. The main result of this work shows that for
graphs with girth greater than 5, a sufficiently large maximum
degree, and a minimum degree close to the maximum degree, it
is sufficient to use only the numbers 1 and 2.
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Odd coloring of k-trees

M. Kashima(1), K. Ozeki(2)

(1) Keio University, Yokohama, Japan
(2) Yokohama National University, Yokohama, Japan

For a graph G, an odd coloring of G is a proper coloring φ
such that every non-isolated vertex v has a color c such that
|φ−1(c) ∩ N(v)| is an odd integer. A graph is said to be odd k-
colorable if it admits an odd coloring with at most k colors. This
notion was introduced by Petruševski and Škrekovski [2] in 2022,
where they investigated odd coloring of planar graphs.

In this talk, we focus on odd coloring of k-trees. For a positive
integer k, a graph which is obtained from Kk+1 by recursively
adding a vertex which is joined to a clique of order k is called a
k-tree. For any k ≥ 1, it is easy to see that there are infinitely
many k-trees that are not odd (k + 1)-colorable. On the other
hand, according to a result by Cranston et al. [1], it follows that
every graph of tree-width at most k is odd (2k + 1)-colorable,
and hence every k-tree is odd (2k+1)-colorable. We improve this
bound by showing that every k-tree is odd (k + 2 ⌊log2 k⌋ + 3)-
colorable. Furthermore, when k = 2, 3, we show that every 2-tree
is odd 4-colorable and that every 3-tree is odd 5-colorable, both
of which are tight bounds. In particular, since every maximal
outerplanar graph is a 2-tree, this implies that every maximal
outerplanar graph is odd 4-colorable.

References

[1] D. W. Cranston, M. Lafferty, Z.-X. Song, A note on odd color-
ings of 1-planar graphs, Discrete Appl. Math., 2023 pp.112-117.

[2] M. Petruševski, R. Škrekovski, Colorings with neighborhood
parity condition, Discrete Appl. Math. 2022 pp.385-391.
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Line graph orientations and list edge colorings
of regular graphs

G. Gutowski(1), J. Kozik(1), B. Podkanowicz(1)

(1) Jagiellonian University, Krakow, Poland

The List Edge Coloring Conjecture states that for any graph
G, the list chromatic index ch′(G) equals the chromatic index
χ′(G). A major breakthrough toward resolving this conjecture
was Galvin’s proof that it holds for bipartite graphs. It is natural
to consider extending his coloring procedure to general graphs
by decomposing them into bipartite subgraphs. However, such
decompositions turn out to be incompatible with the method.

In 1996, Kahn proved that the conjecture holds asymptoti-
cally, establishing an upper bound of χ′(G) + o(χ′(G)). A later
refinement by Häggkvist and Janssen, yielding a bound of χ′(G)+

Õ(χ′(G)2/3), relies on the Alon–Tarsi polynomial method. This
approach derives bounds from the existence of specific orienta-
tions of the line graph. Interestingly, such orientations can be
constructed from those of bipartite subgraphs arising from natu-
ral decompositions. Therefore, any improvement of the result for
bipartite graphs could potentially enhance the general bounds.
Unfortunately, no such bipartite-specific improvements are cur-
rently known.

In this work, we explore this approach and present partial
results on coloring line graphs of complete multipartite graphs.
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List distinguishing index of graphs

Jakub Kwaśny(1), Marcin Stawiski(1)

(1) AGH University of Krakow

An edge colouring of a graph is called distinguishing if there is
no non-trivial automorphism which preserves it. Distinguishing
colourings gained quite a lot of attention since 1990s, and are still
extensively studied. The most notable recent result in this area
is the confirmation by Babai of the Infinite Motion Conjecture
proposed by Tucker.

The talk will be about the list variant of this problem. We
will present a general bound of ∆(G)−1 for all connected graphs
apart from some classified exceptions. This bound is optimal and
it matches the best known bound for non-list colourings.

Then, we will discuss an improvement of the result of Lehner,
Pilśniak, and Stawiski, which states that there is a distinguishing
3-edge-colouring of any connected regular graph except K2. We
prove that every at most countable, finite or infinite, connected
regular graph of order at least 7 admits a distinguishing edge
colouring from any set of lists of length 2.

References

[1] J. Kwaśny, M. Stawiski, Distinguishing regular graphs from
lists, arXiv:2207.14728.

[2] J. Kwaśny, M. Stawiski, List distinguishing index of graphs,
arXiv:2306.06418.
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On the Orbital Chromatic Polynomial

Klaus Dohmen(1), Mandy Lange-Geisler(2)

(1) Mittweida University of Applied Sciences, Mittweida, Germany
(2) Mittweida University of Applied Sciences, Mittweida, Germany

The orbital chromatic polynomial, introduced by Cameron
and Kayibi in 2007, counts the number of proper λ-colorings of a
graph modulo a group of symmetries. The polynomial has been
investigated for specific graphs, including the Petersen graph,
complete graphs, null graphs, paths, and cycles of small length.
So far, no general formula for the orbital chromatic polynomial
of the n-cycle for arbitrary n has been established.

In this talk we present such formula for the group of rotations
and the full automorphism group of the n-cycle. As a side result,
we obtain a new proof of Fermat’s little theorem.

References

[1] K. Dohmen, M. Lange-Geisler, The Orbital Chromatic Poly-
nomial of a Cycle, url: https://arxiv.org/abs/2009.08235.
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Colouring cubic multipoles

R. Lukoťka(1)

(1) Comenius University, Bratislava, Slovakia

To study 3-edge-uncolourability of a cubic graph one can take
a cut containing k edges and split the graph into two graph parts,
called cubic k-poles. Each 3-edge-colouring of a k-pole induces a
k-tuple of colours on the dangling edges, called boundary colour-
ing. All colourings of the k-pole induce a (multi)set of bound-
ary colourings, called colouring set. A colouring set contains
only colourings satisfying parity lemma and the set has to be
closed under Kempe switches. For k ≤ 5 these two conditions
are not only necessary but also sufficient. We will focus on the
case where k = 6. We introduce a new equivalence relation that
greatly reduces the number of colouring sets one needs to con-
sider. We present the results of computational experiments using
this equivalence relation.

For planar graphs Four Colour Theorem can be used to re-
strict colouring sets of k-poles. We show that certain generalised
flow polynomials are an efficient tool to capture the number of
colourings with given boundary. We explore conditions that Four
Colour Theorem imposes on the polynomial and study k-poles
that are close to “refuting” the Four Colour Theorem with re-
spect to their polynomial coefficients.
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Sufficient forbidden immersion conditions for
graphs to be 7-colorable

S. Maezawa(1)

(1) Nihon University, Tokyo, Japan

A graph H is an immersion of a graph G if there exist an
injective function f1 : V (H) → V (G) and a mappign f2 from the
edges of H to paths of G satisfying that

• for uv ∈ E(H), f2(uv) is a path connecting f1(u) and f1(v)
and

• for edges e, e′ ∈ E(H) with e ̸= e′, f2(e) and f2(e
′) are

pairwise edge-disjoint.

In analogy with Hadwiger’s conjecture, Abu-Khzam and Langston
[1] proposed the follwoing conjecture : every graph with no Kt as
an immersion is (t−1)-colorable. Lescure and Meyniel [2] proved
the conjecture for t = 5, 6 and DeVos, Kawarabayashi, Mohar,
and Okamura [3] proved the conjecture for t = 7. In this talk, we
discuss the conjecture for t = 8.

References

[1] F. N. Abu-Khzam and M. A. Langston, Graph coloring and
the immersion order, in: Computing and Combinatorics, in:
Lecture Notes in Comput. Sci., vol. 2697. Springer, Berlin,
2003, pp. 394–403.

[2] F. Lescure and H. Meyniel, On a problem upon configurations
contained in graphs with given chromatic number, Graph the-
ory in memory of G. A. Dirac, 325–331, Ann. Discrete Math.,
41, North-Holland, Amsterdam, 1989.

[3] M. DeVos, K. Kawarabayashi, B. Mohar, and H. Okamura,
Immersing small complete graphs, Ars. Math. Contemp. 3 (2)
(2010) 139–146.
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Erdős-Pósa property of cycles that are far
apart

Piotr Micek(1)

(1) Jagiellonian University, Kraków, Poland

We prove that there exist functions f and g such that for all
nonnegative integers k and d, for every graph G, either G contains
k cycles such that vertices of different cycles have distance greater
than d in G, or there exists a subset X of vertices of G, with
|X| ⩽ f(k) such that G−BG(X, g(d)) is a forest, where BG(X, r)
denotes the set of vertices of G having distance at most r from a
vertex of X.
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Edge-uncoverability by four perfect matchings
in cubic graphs

Makuochukwu Felix Oguagbaka(1), Robert Lukoťka(1)

(1) Comenius University, Bratislava, Slovakia

Several longstanding conjectures in graph theory, including
the Cycle Double Cover Conjecture, can be reduced to the case
of cubic graphs. A notable parameter in this context is the perfect
matching index of a cubic graph, defined as the minimum number
of perfect matchings needed to cover its edges. In particular, if
these conjectures hold for cubic graphs with perfect matching
index at least 5, they hold in general.

In this talk, we introduce several invariants that capture how
far a cubic graph G is from being coverable by four perfect match-
ings. One such invariant is the four perfect matching defect of G,
denoted by dPM(G), defined as the minimum number of edges
of G not covered by four perfect matchings. Another is the four
matching cover defect of G, denoted by dM(G), defined as the
minimum sum of defects of matchings over all matching covers of
G containing four matchings, where the defect of a matching is
half of the number of vertices it leaves uncovered. We prove that
dM(G) ≤ dPM(G). Furthermore, we show that for each integer
k, there exists a cubic graph with dM(G) = dPM(G) = k; that
is, there are cubic graphs that are far from being coverable by
four perfect matchings. We also present another family of cubic
graphs, in which, for each integer k, there exists a cubic graph
with 2dM(G) ≤ dPM(G) = 2k.

Beyond offering new perspectives on the structure of cubic
graphs, we also demonstrate that such measures yield partial
results toward resolving these famous conjectures.
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List extensions of majority edge colourings
P. Pękała(1), J. Przybyło(1)

(1) AGH University, Cracow, Poland

A majority edge colouring of a graph G is a colouring of the
edges of G such that for each vertex v of G, at most half the
edges incident with v have the same colour. More generally, for a
natural number k ≥ 2, a 1/k-majority edge-colouring of a graph
is a colouring of the edges of G such that for every colour c and
every vertex v of G at most 1/k of the edges incident with v
have the colour c. This notion was introduced in 2023 by Bock,
Kalinowski, Pardey, Pilśniak, Rautenbach and Woźniak [1].

We investigate possible list extensions of generalised majority
edge colourings. In particular, given a graph G, a list assignment
L and a majority tolerance α ∈ (0, 1), an α-majority L-colouring
of G is a colouring ω : E → C from the given lists such that for
every v ∈ V and each c ∈ C, the number of edges coloured c which
are incident with v does not exceed α · d(v). We discuss some
restrictions necessary to extend this notion to a more general
setting with diversified α = α(c) majority tolerances for distinct
colours c ∈ C. In particular, for any list assignment L : E → 2C

with
∑

c∈L(e) α(c) ≥ 1+ε and |L(e)| ≤ ℓ for each edge e, we show
that there exists an α-majority L-colouring of G, provided that
δ(G) = Ω(ℓ2ε−2).
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Soft Happy Colouring
Mohammad H. Shekarriz(1)

(1) School of Information Technology, Deakin University, Burwood
3125, VIC, Australia

For a coloured graph G and 0 ≤ ρ ≤ 1, a vertex v is ρ-
happy if at least ρ deg(v) of its neighbours share its colour. The
soft happy colouring problem seeks a colouring σ that extends
a given precolouring and maximises the number of ρ-happy ver-
tices [3]. This NP-hard problem is closely linked to community
detection in graphs. For example, for a graph in the stochas-
tic block model (SBM) and for suitable ρ, with high probability,
complete soft happy colourings can be achieved by the planted
community structure [1]. Moreover, for 0 ≤ ρ1 < ρ2 ≤ 1, com-
plete ρ2-happy colourings achieve higher detection accuracy than
complete ρ1-happy colourings, and when ρ surpasses a critical
threshold, it is unlikely to find a complete ρ-happy colouring
with near-equal class sizes [2]. Finally, we survey existing al-
gorithms and propose novel heuristic, local search, evolutionary,
metaheuristic, and matheuristic approaches that enhance solu-
tion quality for soft happy colouring.
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List strong edge-colouring

B. Lužar(1), E. Máčajová(2), R. Soták(3), D. Švecová(3)

(1) Faculty of Information Studies, Novo mesto, Slovenia.
(2) Comenius University, Bratislava, Slovakia.
(3) Pavol Jozef Šafárik University, Košice, Slovakia.

A strong edge-coloring of a graph is an edge-coloring in which
every color class is an induced matching. The least number of
colors needed for a strong edge-coloring of a graph is the strong
chromatic index.

We consider the list version of the coloring and prove that
the list strong chromatic index of graphs with maximum degree
3 is at most 10. This bound is tight and improves the previous
bound of 11 colors ([1]).

Next, we consider graphs with maximum degree 4, where the
best known bound for the list strong edge-coloring is 22 ([2]).
We improve this result and establish an upper bound of 21 for
the strong list chromatic index of subquartic graphs. Since there
exist subquartic graphs whose strong chromatic index is 20, our
bound is only one above the best possible.
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Irreducibility in distinguishing colourings

M. Stawiski(1)

(1) AGH University, Kraków, Poland

We investigate the role of the Axiom of Choice and its weaker
forms in distinguishing and proper colourings. In particular, we
formulate conditions equivalent to AC in terms of such colourings
in both vertex and edge variants. Moreover, we study the notion
of irreducible distinguishing colourings, i.e. distinguishing colour-
ings such that no two non-empty classes of colours may be merged
to obtain another distinguishing colourings. One may view such
as distinguishing colourings for which no colour is abundant.
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Normal edge coloring

I. Fabrici(1), B. Lužar(2), E. Máčajová(3), R. Soták(1), D. Švecová(1)

(1) P.J. Šafárik University, Košice, Slovensko
(2) Faculty of Information Studies, Novo mesto, Slovenia
(3) Comenius University, Bratislava, Slovakia

A normal edge coloring of a cubic graph is a proper edge
coloring, in which every edge is adjacent to edges colored with
four distinct colors or to edges colored with two distinct colors.
It is conjectured that 5 colors suffices for a normal edge coloring
of any bridgeless cubic graph and this statement is equivalent to
the Petersen Coloring Conjecture. Currently, we only know that
any cubic graph admits a normal edge coloring with at most 7
colors.

We present new results regarding the normal coloring of spe-
cial graph classes. In the second part, we introduce the study of
the list version of the normal edge coloring. It turns out to be
more restrictive and consequently more colors are needed. In par-
ticular, we show that there are cubic graphs which need at least
9 colors for a list normal edge coloring and there are bridgeless
cubic graphs which need at least 8 colors.
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Quasi-majority neighbor sum distinguishing
edge-colorings

R. Kalinowski(1), M. Pilśniak(1), E. Sidorowicz(2), E. Turowska(2)

(1) AGH University of Kraków, Kraków, Poland
(2) University of Zielona Góra, Zielona Góra, Poland

An edge-coloring c of a graph G defines in a natural way a
vertex-coloring σc : V (G) → N by σc(v) =

∑
u∈NG(v) c(vu) for

each v ∈ V (G). The edge-coloring c is called neighbor sum dis-
tinguishing if σc(u) ̸= σc(v) for every uv ∈ E(G). This type
of edge-coloring is related to the 1-2-3 Conjecture, proved by
Keusch [1].

We study neighbor sum distinguishing edge-coloring under
additional local constraint, requiring the edge-coloring to be quasi-
majority. A k-edge-coloring of G is called quasi-majority if for
every v ∈ V (G) and every α ∈ [k], at most

⌈
d(v)
2

⌉
edges incident

to v are colored with α.
A k-edge-coloring of G is called quasi-majority neighbor sum

distinguishing if it is quasi-majority and neighbor sum distin-
guishing. The smallest k for which G admits such a coloring is
denoted by χQM∑ (G). A graph is nice if it has no component iso-
morphic to K2. We show that χQM∑ (G) ≤ 12 for every nice G.
This bound improves to 6 for nice bipartite graphs and to 7 for
nice graphs of maximum degree at most four. Moreover, we de-
termine the exact value of χQM∑ (G) for complete graphs, complete
bipartite graphs, and trees.
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Odd independent sets and strong odd colorings
of graphs

Y. Caro(1), M. Petruševski(2), R. Škrekovski(3), Zs. Tuza(4,5)

(1) University of Haifa-Oranim, Tivon, Israel
(2) Ss. Cyril and Methodius University in Skopje, Macedonia
(3) University of Ljubljana, Slovenia
(4) University of Pannonia, Veszprém, Hungary
(5) Alfréd Rényi Institute of Mathematics, Budapest, Hungary

We say that an S ⊂ V (G) is an odd independent set in graph
G if it is independent (induces no edges) and every vertex in
V \S is adjacent either to no vertex of S or to an odd number of
vertices of S. The largest cardinality of such a set is termed the
odd independence number of G.

A strong odd coloring of G is a partition of the vertex set into
odd independent sets; the corresponding parameter (minimum
number of colors) is called strong odd chromatic number.

Beside many results concerning these notions, we also offer a
large number of open problems for future research.
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On high-girth high-chromatic subgraphs of
Burling graphs

Seth Pettie(1), Gábor Tardos(2), Bartosz Walczak(3)

(1) University of Michigan, Ann Arbor, USA
(2) HUN-REN Rényi Institute, Budapest, Hungary
(3) Jagiellonian University, Kraków, Poland

A well-known conjecture of Erdős and Hajnal asserts that for
any g and k, there is a finite number f(g, k) such that every graph
with chromatic number at least f(g, k) contains a subgraph with
girth at least g and chromatic number at least k. Rödl (1977)
proved the conjecture for g = 4, in particular showing that f(4, k)
is bounded from above by a tower of ks of height O(k2 log k). The
conjecture remains open for g ≥ 5.

A construction of triangle-free high-chromatic graphs due to
Burling (1965) was used in the last decade to provide counterex-
amples to several conjectures and was shown to have various
unexpected properties. We show that while Burling graphs do
satisfy the aforesaid Erdős–Hajnal conjecture, they provide the
first non-trivial lower bound on the growth of f(g, k). Specifi-
cally, if T (k) denotes the tower of 2s of height k, we prove that
the Burling graph with chromatic number T (k − O(1)) has no
subgraph with girth 5 and chromatic number at least k, showing
that f(5, k) > T (k −O(1)).

A key tool for the proof is a combinatorial game in which two
players, Builder and Chooser, alternate turns to build a graph
vertex by vertex as follows: Builder introduces a new vertex
with edges to all previous vertices and then partitions the en-
tire edge set into two subsets, after which Chooser deletes one
of the two subsets. Builder attempts to build a clique of size
k, while Chooser attempts to prevent that. We prove upper and
lower bounds of the form T (k±O(1)) on how many turns Builder
needs to guarantee a k-clique.
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