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Graph-Codes: Problems, Results and Methods
Noga Alon(1:2)

(1) Princeton University, Princeton, USA
(2) Tel Aviv University, Tel Aviv, Israel

The study of Graph-Codes is motivated by questions in Ex-
tremal Combinatorics, Additive Number Theory and Coding The-
ory. The initial guiding fact is that viewing binary vectors as
characteristic vectors of edge-sets of graphs transforms the ba-
sic combinatorial questions of Coding Theory into intriguing ex-
tremal problems about families of graphs. I will discuss some of
these questions and describe several results and open problems.
The relevant methods combine Combinatorial and Probabilistic
tools with techniques from Information Theory, Number Theory
and the theory of Combinatorial Designs.
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Vertex sets in a hypercube: fair distribution
and quick secret sharing

Maria Axenovich®)

(1) Karlsruhe Institute of Technology, Karlsruhe, Germany

Hypercubes are highly symmetrical graphs important for their
mathematical properties, such as representing set systems, as well
as for their applications in computer science and data analysis
due to efficient communication pathways.

This talk will address two questions about special vertex sets
in a hypercube Q,:

For what parameters (n,d,s) is there a set A of vertices in
@, that is distributed “fairly”, i.e., such that each sub-hypercube
of dimension d has exactly s vertices from A?

What is the largest size of a set B of vertices in (), that can
share secrets quickly, i.e., such that for any two vertices from B
there is a shortest in (),, path between them that contains no
other vertices from B.

The talk is based on a joint work with Noga Alon, John Gold-
wasser, and Dingyuan Liu.
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On fractional chromatic number and its
approximations

Zdensk Dvorak()

(1) Charles University, Prague, Czechia

In fractional coloring, we color vertices of a graph by sets
of measure one subject to the constraint that adjacent vertices
receive disjoint sets, and we minimize the measure of the union
of these sets. This is a natural generalization of the usual graph
coloring, which can be viewed as a special case when the measure
space is finite. Hence, fractional chromatic number can be used
as a lower bound for the ordinary chromatic number. Moreover,
optimal fractional coloring reveals interesting information about
independent sets of the graph.

Unsurprisingly, it is hard (both from the theoretical and the
computational perspective) to determine the fractional chromatic
number exactly. Thus, it is natural to ask whether we can ap-
proximate it or bound it in terms of simpler graph parameters.
In my talk, T will discuss recent results concerning several inter-
pretations of this question.
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Configuration space of 2-cell embeddings of
graphs in surfaces and the Genus
Log-Concavity Conjecture

Bojan Mohar(12)

(1) Simon Fraser University, Burnaby, Canada
(2) University of Ljubljana, Ljubljana, Slovenia

Every 2-cell embedding of a graph in some closed surface can
be described (canonically) by specifying local clockwise rotations
of edges emanating from each vertex. The set of all such rota-
tion systems on a given graph can be viewed as a large graph,
called the configuration space of 2-cell embeddings of the graph.
With special emphasis on cubic graphs, the talk will discuss how
many embeddings of certain genus can we have. An application
towards and against the Genus Log-Concavity Conjecture will be
presented. The main part of the talk is joint work with MacKen-
zie Carr.
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Degree-truncated choice number of graphs

X. Zhu®)

(1) Zhejiang Normal University, Jinhua, China

Assume G is a connected graph and k is a positive integer.
We say G is degree-truncated k-choosable if G is f-choosable,
where f(v) = min{dg(v), k}. The degree-truncated choice num-
ber ch*(G) of G is the minimum k such that G is degree-truncated
k-choosable. For a family G of graphs, let ch*(G) = max{ch*(G) :
G € G}. If G is a Gallai-tree, then G is not degree-choosable, and
hence G is not degree-truncated k-choosable for any integer k. In
this case, the degree-truncated choice number of G is not defined.
Otherwise, ch*(G) is well-defined and is at most the maximum
degree of G.

In this talk, T will survey recent progress on the study of
degree-truncated choice number of graphs, and pose some ques-
tions. This talk includes results in a few papers joint with C.
Deng, Y. Jiang, S. Lo, C. Wang, H. Xu, X. Xu, H. Zhou and J.
Zhu.

References
[1] C. Deng and X. Zhu, Degree-truncated Alon-Tarsi number of
outerplanar graphs, Manuscript, 2025.

[2] J. Hutchinson, On list-Coloring outerplanar graphs, J. Graph
Theory 59 (2008), 59-74.

[3] Y. Jiang, H. Xu, X. Xu and X. Zhu, Degree-truncated choos-
ability of planar graphs, Manuscript, 2025.

[4] O. S. Lo, C. Wang, H. Zhou and X. Zhu, Ky,
minor free graphs are DP-5-truncated degree-colourable,
arXiw:2312.15962.

[5] H. Zhou, J. Zhu and X. Zhu, Degree-truncated choosability
of graphs, Journal of Combinatorial Theory Ser. B, to appear
(2025).
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Connections between local regularity and
symmetry in graphs

Robert Jajcay®

(1) Comenius University, Bratislava, Slovakia

When talking about highly symmetric graphs, we may be
talking about several different but interconnected concepts. We
may be talking about graphs with large automorphism groups
(in comparison to their orders), or graphs whose automorphism
groups act in a special way (vertex-transitive, edge-transitive,
arc-transitive, etc.), or we can even be talking about graphs that
appear symmetric (but may not necessarily be), by which we may
mean some kind of a regularity shared by graphs from the other
two classes defined by symmetries viewed as automorphisms.

In our presentation, we aim to connect these various concepts
of symmetry via discussing hierarchies within the above classes of
graphs and the links connecting the various levels of these hierar-
chies. We will also discuss possibilities for loosening or generaliz-
ing some of the discussed concepts in order to explore connections
to even wider classes defined via the existence or possibly even
lack of specific symmetries. Some of the topics discussed will
include smallest vertex-transitive subgroups and families of au-
tomorphisms and their connection to Cayley and quasi-Cayley
graphs, the monoid of partial automorphisms of a graph, and
girth-regular, edge-girth-regular, and vertex-girth-regular graphs.

Parts of this talk may also be viewed as an introduction to
presentations included in the Algebraic Graph Theory session of
the 10th Cracow Conference 2025.
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Uniform routings of shortest paths in graphs
with large automorphism groups

V. Cingel¥, R. Jajeay(t

(1) Comenius University, Bratislava, Slovakia
(2) Supervisor

A routing R of a given connected graph I' of order n is a col-
lection of n(n —1) paths connecting every ordered pair of distinct
vertices of I'. If these paths are the shortest, R is called a routing
of shortest paths. The load £(I', R,v) of a given vertex v is the
number of paths of R passing (not beginning or ending) through
v. When designing networks, it is often beneficial when every
vertex has the same load. Such a routing is called a uniform
routing of shortest paths, or shortly URSP.

Many vertex-transitive (v-t) graphs have been shown to ad-
mit a URSP. For example, all Cayley and quasi-Cayley graphs,
i.e. all graphs containing a regular set of automorphisms [1].
However, not all v-t graphs belong in this class - the underly-
ing graph of the dodecahedron does not admit a URSP [2]|. The
connection between the level of ‘symmetry’ of a graph and the
existence of a URSP is not well understood. We have shown that
vertex-transitivity is not necessary for the existence of a URSP.
However, in the case of geodetic graphs, i.e. graphs having pre-
cisely one shortest path between any two vertices, we have shown
that vertex-transitivity suffices. We will present a classification
of planar geodetic graphs with respect to the existence of URSP.

References

[1] G.Gauyacq, On quasi-Cayley graphs, Discrete Appl. Math.
No. 1, 1997 pp.43-58.

[2] S.Shim, J.Siran, and J.Zerovnik, Counterexamples to the
uniform shortest path routing conjecture for vertex-transitive
graphs. Discrete Appl. Math. 119.3, 2002, pp.281-286.
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Cubic girth-regular graphs of girth six
S. Glevitzka®, R. Jajcay™®, M. Lekse®, P. Poto¢nik(®)

(1) Comenius University, Bratislava, Slovakia
(2) IMFM, Ljubljana, Slovenia
(3) University of Ljubljana, Ljubljana, Slovenia

Recall that given a graph I, the girth of I" is the length of
a shortest cycle in I'. If the girth is finite, then each vertex v of
I can be associated with a list of integers, one integer for each
edge incident with v, representing the number of girth cycles
containing the edge (possibly 0). If the lists associated with the
vertices of I' are all identical (and so I' is regular), we say that
I' is girth-regular, and the shared list is said to be the signature
of I'. Note that all vertex-transitive graphs are necessarily girth-
regular.

The concept of girth-regularity was introduced in [1], where
several necessary conditions on signatures of cubic girth-regular
graphs were proved, together with a classification of all cubic
girth-regular graphs of girth at most 5. Consequently, all cu-
bic vertex-transitive graphs of girth 6 were classified in [2]. In
our work, we extend the latter to a characterization of all cubic
girth-regular graphs of girth 6. In addition, we prove multiple
additional conditions on signatures of cubic girth-regular graphs
of any even girth.

The work has been supported by grants VEGA 1/0437/23
and UK/1398/2025.

References

[1] P.Potoc¢nik, J.Vidali, Girth-regular graphs, Ars Math. Con-
temp. 2019 pp.349-368.

[2] P.Potocnik, J.Vidali, Cubic vertex-transitive graphs of girth
six, Discrete Math. 2022.
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Prime factorization of hierarchical products of
infinite graphs

Wilfried Imrich®

(1) Department Mathematics and Information Technology, Montanuni-
versitit Leoben, A-8700 Leoben, Austria

All connected finite graphs have unique prime factorization
with respect to the hierarchical product, as was shown in a joint
paper with Kalinowski and Pilsniak. But this does not extend
to connected infinite graphs. Here it is shown that all connected
infinite rayless graphs have unique prime factorization with re-
spect to the hierarchical product, and conditions are provided
under which this also holds for locally finite infinite graphs. Fur-
thermore, factorization properties of special classes of graphs are
investigated, as well as the structure of the automorphism groups
of hierarchical products.
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Asymmetric depth of graphs

Tatiana Jajcayova(l)

(1) Comenius University, Bratislava, Slovakia

A partial automorphism of a graph is an isomorphism between
its induced subgraphs. The set of all partial automorphisms of a
given graph forms an inverse monoid under composition of partial
maps and taking partial inverses. In constrast to classical group
theory approach to studying symmetries of graphs, where the
automorphism group of a graph can be (and almost always is)
trivial, the inverse monoid of partial automorphisms of a graph is
never trivial. It gives full algebraic description of the graph [1]. In
our talk, motivated by the study of partial automorphism inverse
monoids of graphs, we investigate symmetries of graphs utilising
the measure of asymmetric depth of graphs defined through the
rank of the largest nontrivial partial automorphism. We establish
a new, tight lower bound for the asymmetric depth of any simple
graph I' of order n. Any graph achieving this bound must be
a strongly regular graph with parameters (n, ”T_l, ”7_5, ”T_l) also
known as conference graph. Via computation performed on a
high-performance cluster, we were able to identify an asymmetric
conference graph on 37 vertices that meets this bound, thereby
proving its tightness. We also show that it is one of the smallest

possible graphs to meet this bound.
This is joint work with Jan Pastorek.

Acknowledgments: The work has been supported by APVV grants SK-
AT-23-0019, APVV-23-0076, and by VEGA grant 1/0437/23
References

[1] R. Jajcay, T. Jajcayova, N. Szakacs, and M.B. Szendrei, In-
verse monoids of partial graph automorphisms, Journal of Al-
gebraic Combinatorics, 2021 vol. 53, no. 3, pp.829-849.
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How can graphs help us count?
Pavol Kollar®

(1) Comenius University, Bratislava, Slovakia

This talk is about the topic of Boundary Matrices, which are
matrices specified by a set of forbidden submatrices that these
Boundary Matrices must avoid containing. In this sense, these
matrices are a generalisation of the antidictionary languages,
which is a classical - solved - problem [1]. Ideas similar to bound-
ary matrices show up in various areas of research |2, [3].

In addition to asking “how many boundary matrices without
forbidden submatrices 71, ..., Z, are there of size m xn?”, our fo-
cus of the project is to examine the relation between the numbers
of these matrices. The main interest is answering a conjecture
from [4], whether there exists a two-dimensional linear recurrence
relation between these numbers of boundary matrices.

As we will see, the adjacency matrix of a directed graph re-
lated to building these boundary matrices plays a key role in
determining the answer to the conjecture.

I acknowledge Funding by the EU NextGenerationEU through the Recovery and Re-
silience Plan for Slovakia under the project No. 09103-03-V02-00036. I also acknowledge
support from the Grant of Comenius University No. UK/1188/2025.

References

[1] Alfred V. Aho, Margaret J. Corasick, Efficient string matching:
an aid to bibliographic search, Commun ACM. (1975) 333-340.

[2] Silvere Gangloff, Mathieu Sablik, Quantified block gluing for mul-
tidimensional subshifts of finite type: aperiodicity and entropy.
Journal d’Analyse Mathématique (2021) 21-118.

[3] Elliott H. Lieb, Exact Solution of the Problem of the Entropy of
Two-Dimensional Ice. Physical Review Letters (1967) 692-694.

[4] Robert Jajcay, Tatiana Jajcayova, Marian Opial, Enumeration of
matrices with prohibited bounded sub-windows. Conference Infor-
mation Technologies — Applications and Theory 2018 176-180.
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Cubic vertex-transitive graphs of girth seven
M. Lekse™2) | P. Poto¢nik(®?), M. Toledo™:2)

(1) University of Ljubljana, Ljubljana, Slovenia
(2) IMFM, Ljubljana, Slovenia

Let T" be a graph, and let v be a vertex and e an edge of T'.
The signature of e is the number of girth cycles that contain it,
while the signature of v is the tuple of the signatures of all edges
incident to it (ordered by size). We say that I is girth-regular if
every vertex in the graph has the same signature. This concept
was introduced by Poto¢nik and Vidali in 2019 as a generaliza-
tion of edge-girth-regularity, and they later used it to classify
cubic vertex-transitive graphs of girth at most 6. In this talk, we
present a similar classification of cubic vertex-transitive graphs
of girth 7 based on their signatures.
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On bipartite biregular large graphs derived
from difference sets

G. Araujo-Pardo®, C. Dalf6(®, M. A. Fiol®, N. Lopez(?

(1) Universidad Nacional Auténoma de México, México.
(2) Universitat de Lleida, Spain.
(3) Universitat Politécnica de Catalunya, Barcelona, Spain.

A bipartite graph G = (V, E) with V' = V] U V4 is biregular
if all the vertices of each stable set, V; and V5, have the same
degree, r and s, respectively. This paper studies difference sets
derived from both Abelian and non-Abelian groups. From them,
we propose some constructions of bipartite biregular graphs with
diameter d = 3 and asymptotically optimal order for given de-
grees r and s. Moreover, we find some biMoore graphs, that is,
bipartite biregular graphs that attain the Moore bound.
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Cubic vertex-transitive graphs with a
symmetry-invariant 2-factor — a generalisation
of the Generalised Petersen graphs

P. Sparl(l)
(1) University of Ljubljana, Ljubljana, Slovenia

We present a few results obtained during the investigations
spurred by the question of Bojan Mohar to Brian Alspach from
2016 on cubic vertex-transitive graphs admitting a 2-factor which
is invariant under the full automorphism group of the graph. It is
not difficult to show that the graphs admitting such a 2-factor are
precisely the cubic vertex-transitive but not arc-transitive graphs,
but obtaining a precise description of the graphs in terms of the
corresponding 2-factor and the complementing 1-factor presents
an interesting challenge.

While the simplest case when the 2-factor is a Hamiltonian
cycle of the graph was settled back in 2019 by Alspach, Kho-
dadadpour and Kreher, the author of this talk (and Ted Dobson)
became involved in the investigations when the case that the 2-
factor consists of two cycles was considered. The main purpose
of this talk is to present some more recent results [1], where the
situation that the quotient with respect to the 2-factor is a cycle,
was investigated thoroughly. The resulting graphs in one of the
two essentially different cases represent a very natural generalisa-
tion of the Generalised Petersen graphs (as well as of the perhaps
somewhat lesser-known Honeycomb toroidal graphs).

Some of the presented results are joint work with Brian Alspach.
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Networks with small excess
J. Tuite(1:2)
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The degree/geodecity problem is an analogue for directed and
mixed graphs of the classical degree/girth problem [1]. It asks for
the smallest networks with fixed out-degree (as well as undirected
degree for mixed graphs) such that for any two vertices u, v there
is at most one (non-backtracking) walk from u to v with length at
most k. The directed/mixed Moore bound is a lower bound for
the problem. We present new results on the structure of networks
with order close to the Moore bound, including their regularity
properties, and a new lower bound for mixed graphs for k£ = 2.

References

[1] J. Tuite, G. Erskine, On networks with order close to the
Moore bound, Graphs Comb. 38 (5) (2022) 143.

24



On the optimality criteria of tree
decompositions

Aleksandra Czerczak(!) | Przemystaw Gordinowicz(!)

(1) Lodz University of Technology, L6dz, Poland

Tree decomposilion is an important tool used in algorithmic
and structural graph theory. Intuitively, a tree decomposition
represents the vertices of a graph G as subtrees of some tree
T, in such a way that vertices in G are adjacent only when the
corresponding subtrees intersect. On the other hand — vertices
of T may be viewed as collections of subtrees (and corresponding
vertices of GG) and thus they are called bags.

Given graph G a natural question is how to optimally choose a
tree T' with the particular decomposition. The standard approach
is to have the largest bag as small as possible, which leads to the
notion of tree-width. Recently, another optimization criteria were
considered (eg. tree independence number, where the largest size
of the maximum independent set of the subgraph of G induced
by any bag is optimized).

We discuss some of these criteria, in particular we show the
connection between tree domination number and a hypertree-
width (the standard measure of tree decomposition of hyper-

graphs).
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Strong chordality in digraphs
Pavol Hell )

(1) Simon Fraser University, Burnaby, B.C.

I will discuss digraph analogues of well structured graph classes
such as interval graphs and chordal graphs, with emphasis on
new results on strong chordality in digraphs. These are joint
work with Cesar Hernandez Cruz, and Jing Huang; the older
work involves also collaborations with Sandip Das, Tomas Feder,
Mathew Francis, Jephian Lin, Ross McConnell, and Arash Rafiey.
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K-Coloring (bull, chair)-free graphs
N. Hodur™, M. Pilsniak®), M. Prorok™®), P. Rzazewski(®

(1) AGH University of Krakow, Poland
(2) Warsaw University of Technology & University of Warsaw, Poland

The k-COLORING problem is NP-hard in general, but it be-
comes tractable in some hereditary graph classes. We show that
it can be solved in polynomial time for (bull, chair)-free graphs.
Here, chair is a 3-star S; 12 with one edge subdivided and bull
is a triangle with two additional leaves attached to two vertices.

The algorithm we present in this talk resolves even a more
general LiST k-COLORING problem: given a graph G and a set
of lists {L(v) : v € V(G), L(v) C [k]}, we look for a proper col-
oring ¢ of V(G) such that c¢(v) € L(v) for every vertex v. The
algorithm works recursively, where base trivial case is |V (G)| = 1
or maxyey()|L(v)] = 1. In one step we exhaustively guess the
coloring of an expansion of path R C G and for each coloring
guessed we adjust the lists and call the algorithm on the compo-
nents of G — R. In each descendant call maximum length of the
lists decreases, so the depth of recursion is bounded by k.
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Coloring Mixed Graphs

Grzegorz Gutowski!), Konstanty Junosza-Szaniawski(®), Antonio
Lauerbach® | Pawet RZQZGWSki(Z), Alexander Wolff®

(1) Jagiellonian University
(2) Warsaw University of Technology
(3) University of Wiirzburg

A mized graph is defined as a triple (V, E, A), where V' is the
set of vertices, F is the set of undirected edges, and A is the set
of directed edges (arcs). A proper coloring of a mixed graph is
an assignment of positive integers (colors) to the vertices such
that adjacent vertices connected by an undirected edge receive
distinct colors, and for every directed edge (u,v) € A, the color
assigned to vertex v is strictly greater than the color assigned to
U.

In this talk, we present two algorithms for computing the min-
imal number of colors required to properly color a mixed graph.
The first algorithm operates in exponential space, while the sec-
ond in polynomial space. We further analyze the computational
complexity of these algorithms, revealing connections to several
interesting problems in extremal graph theory.
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Rendezvous of heterogeneous agents and
multimode graphs

Fukasz Kuszner®)

(1) University of Gdansk, Poland

In the rendezvous problem, two mobile agents move along
edges from node to node, with the goal of occupying the same
node at the same time. Once, the time required to move along
the edge is defined separately for each agent, we call them het-
erogeneous |1].

Intuitively, the very large weight assigned to an edge makes
it practically inaccessible to the agent. This leads to a concept
in which the graph G is given with two sets of edges 4 and Ep
that define availability zones for A and B agents, respectively [2].

The very similar concept with separate edge sets that define
availability zones was used to analyze evacuation and searching
problems in graphs. In the independent studies, the same object
is called a multimode graph |3] with the motivations coming from
multi 'mode’ transport where different 'modes’ are not combin-
able, such as flights operated by different airline alliances.
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Linear colorings of graphs
C. Hilaire®, M. Krnc®, M. Milani¢®, J.-F. Raymond®

(1) FAMNIT and IAM, University of Primorska, Koper, Slovenia
(2) CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR
5668, Lyon, France

Motivated by algorithmic applications, Kun, O’Brien, Pilipczuk,
and Sullivan |2| introduced the parameter linear chromatic num-
ber as a relaxation of treedepth and proved that the two param-
eters are polynomially related. They conjectured that treedepth
could be bounded from above by twice the linear chromatic num-
ber. We investigate the properties of linear chromatic number
and provide improved bounds in several graph classes (see [1]).
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Layered tree-independence number and
clique-based separators

C. Dallard®™, M. Milani¢®®, A. Munaro®, S. Yang®

University of Fribourg, Switzerland

University of Parma, Italy

1)
(2) University of Primorska, Slovenia
3)
(4) Queen’s University Belfast, UK

Motivated by a question of Galby, Munaro, and Yang (SoCG
2023) asking whether every graph class of bounded layered tree-
independence number admits clique-based separators of sublinear
weight, we investigate relations between layered tree-independ-
ence number, weight of clique-based separators, clique cover de-
generacy and independence degeneracy. In particular, we provide
a number of results bounding these parameters on geometric in-
tersection graphs. For example, we show that the layered tree-
independence number is O(g) for g-map graphs, O( ;) for hy-
perbolic uniform disk graphs with radius r, and O(1) for spher-
ical uniform disk graphs with radius r. Our structural results
have algorithmic consequences. In particular, we obtain a num-
ber of subexponential or quasi-polynomial-time algorithms for
weighted problems such as MAX WEIGHT INDEPENDENT SET
and MIN WEIGHT FEEDBACK VERTEX SET on several geomet-
ric intersection graphs. Finally, we conjecture that every fraction-
ally tree-independence-number-fragile graph class has bounded
independence degeneracy.
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Hitting all longest paths in hereditary graph
classes

Amir Nikabadi(®)

(1) IT University of Copenhagen, Denmark.

The longest path transversal number of a connected graph G,
is the minimum size of a set of vertices of G hitting all longest
paths in G. Surprisingly, it is not known whether there exists
a constant upper bound for the longest path transversal number
of connected graphs. We present constant upper bounds for the
longest path transversal number of multiple hereditary classes of
graphs, that is, classes of graphs which are closed under induced
subgraph containment, including the class of FPy-free graphs.
Based on a joint work with Paloma T. Lima and Pawel Rzazewski.
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A Faster Algorithm for Independent Cut

V. Chernyshev(l), J. Rauch®, D. Rautenbach®, L. Redina®

(1) Ulm University, Ulm, Germany
(2) HSE University, Moscow, Russia

The previously fastest algorithm for deciding the existence of
an independent cut had a runtime of 0*(1.4423"), where n is
the order of the input graph. We improve this to O*(1.4143").

In fact, we prove a runtime of O* (2(%_%)"> on graphs of order

n and maximum degree at most A, where an = m. Fur-
Pl

thermore, we show that the problem is fixed-parameter tractable
on graphs of order n and minimum degree at least Sn for some
g > %, where (3 is the parameter.
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MIS on graphs excluding induced substructures

A. Wesolek™®)
(1) University of Potsdam, Potsdam, Germany

The complexity of the Maximum Independent Set problem is
fully classified for graph classes defined by forbidden subgraphs
or minors. It is polynomial-time solvable when excluding a forest
in which every tree has at most three leaves as a subgraph, or
when excluding a planar graph as a minor; in all other cases, it
remains NP-hard. For graph classes defined by forbidden induced
subgraphs or induced minors, however, the complexity landscape
is largely unresolved. This talk presents some of the resolved
cases (|1], |2]) and their connections to related problems.
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Algorithmically on vertices that belong to
all, some and no minimum dominating set
in a tree

Radostaw Ziemann?), Pawel Zylinski()

(1) University of Gdansk, 80-308 Gdarnisk, Poland

A subset D of Vg is said to be a dominating set of a graph
G = (Vg, Eg) if each vertex in the set Vi \ D has a neighbour
in D. The (independent) domination number of G, denoted by
¥(G) (resp., by 7;(G)), is defined to be the minimum cardinality
of a (independent) dominating set D of G, and any minimum
(independent) dominating set of G is referred to as a y-set (resp.,
as a y;-set).

We propose a linear time algorithm for determining the sets of
vertices that belong to all, some and no minimum dominating set
of a tree, respectively, thus improving the quadratic time algo-
rithm of Benecke and Mynhardt in 2008 [S. Benecke, C.M. Myn-
hardt, Trees with domination subdivision number one, Austral-
asian Journal of Combinatorics 42, 201-209 (2008)].

Our result immediately implies the following corollaries: For
any tree T, the following problems are solvable in linear time and
space: (A) The problem of verifying whether T is y-excellent; (B)
The problem of verifying whether sd,(T') = 1; (C') The problem
of verifying whether sd.,(T) = 1. Recall that for a given graph
parameter i, the p-subdivision number sd,, is defined to be the
minimum number of edges that must be subdivided to change g,
where each edge may be subdivided at most once.
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Shiftable Heffter Spaces
M. Buratti®, A. Pasotti(®

(1) Sapienza Universita di Roma, Roma, Italy
(2) Universita degli Studi di Brescia, Brescia, [taly

The notion of a Heffter array [1]| is equivalent to a pair of
orthogonal Heffter systems. In [2, 3] we proved the existence of
a set of r mutually orthogonal Heffter systems for any r. Such
a set is equivalent to a resolvable partial linear space of degree r
whose parallel classes are Heffter systems: we call such a design
a Heffter space. In this talk we focus on shiftable Heffter spaces
[4] presenting a direct construction, making use of pandiagonal
magic squares, and a recursive one.
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On the Buratti-Horak-Rosa Conjecture for
Small Supports

0. Agirseven™ | MLA. Ollis®

(1) Independent Scholar, Somerville, MA, USA
(2) Emerson College, Boston, MA, USA

Label the vertices of the complete graph K, with the distinct
elements of Z, and define the length ¢ of each edge as the cyclical
distance between labels of its end-vertices. A Hamiltonian path
through K, is called a realization of a given multiset L if its edge
labels are L. The Buratti-Horak-Rosa Conjecture is that there is
a realization for a multiset L if and only if for any divisor d of v
the number of multiples of d in L is at most v — d.

The toroidal lattice of vertices associated with each multiset
was shown to be useful for constructing special types of realiza-
tions, the concatenations of which yield realizations for larger
multisets [1, 2, 3, 4]. We will present our recent constructions
yielding “standard linear realizations" for multisets with support
of the form {1,z,y} whenever the number of 1-edges is at least
max(z,y) + ged(x,y) — 1. These constructions considerably ex-
tend the parameters for which the conjecture is known to hold.
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Gregarious hypergraph designs
P. Bonacini®®, L. Marino®, Z. Tuza®

(1) University of Catania, Catania, Italy
) University of Pannonia, Veszprém, Hungary

A subhypergraph H of a given hypergraph is said to be gre-
garious with respect to a fixed vertex partition if the vertices of
‘H belong to mutually distinct vertex classes. For graphs, this no-
tion was introduced in the context of edge decomposition more
than two decades ago, but its hypergraph generalization was first
considered as late as in 2023, and only to the extent of just one
theorem on 3-uniform hypergraphs. We begin the systematic
study of gregarious decompositions of hypergraphs, with focus on
complete n-partite r-uniform hypergraphs. Beyond their gregar-
ious decompositions, a new approach is also offered and a related
parameter introduced, expressing the gregarious decomposability
of the blowups of a hypergraph.
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Packing designs with large block size

Andrea Burgess(?), Peter Danziger(®), Daniel Horsley(®),
Muhammad Tariq J aved(?

(1) University of New Brunswick, Saint John, Canada
(2) Toronto Metropolitan University, Toronto, Canada
(3) Monash University, Melbourne, Australia

Given positive integers v, k, t and A with v > k > ¢, a packing
design PD (v, k,t) is a pair (V, B), where V is a v-set and B is a
collection of k-subsets of V' such that each t-subset of V' appears
in at most A elements of B. The maximum size of a PD,(v, k, )
is called the packing number and denoted PDN, (v, k, t).

We prove that for a positive integer n, PDN,(v,k,t) = n
whenever nk — (t — 1)()\11) <M< (n+1)k—(t-1) (i\bﬂ) For
fixed t and A, this determines the value of PDNy(v, k,t) when k
is large with respect to v. By showing that if no point appears
in more than three blocks, the blocks of a PDNy(v, k,2) can be
directed so that no ordered pair appears more than once, we also
extend our results to directed packings with index A = 1 and

strength ¢t = 2.
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Hamiltonian Cycles on Coverings

Amanda Lynn Chafee” Brett Stevens™®)

(1) Carleton University, Ottawa, ON, Canada

A covering design is a v-set V' and a list B of b blocks of size
k where every pair from V must occur in at least one block. A
1-block intersection graph (1-BIG) is a graph G = (B, E), where
b€ Band (b)) € Eif [bNn¥| =1 for b0’ € B. This talk
will go over what independence sets look like in a 1-BIG based
on coverings with £k = 3. We prove that optimal k£ = 3 coverings
v =5 (mod 3) have a Hamiltonian cycle and show why this proof
fails for even v that are not Steiner Triple Systems.
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On the typical full automorphism group of
Biembeddings of Archdeacon type

Simone Costa(!)

(1) University of Brescia, Brescia, Italy

In his seminal paper [1], Archdeacon introduced Heffter ar-
rays as a tool to construct explicit Z,-regular biembeddings of
complete graphs K, into orientable surfaces. The automorphism
groups of these embeddings were later investigated in [3]|, where
upper bounds on their size were established, and in [2], where it
was shown that these bounds are attainable.

In this talk, we consider a generalization of the notion of
Heffter array: the quasi-Heffter arrays. This framework yields
2-colorable Archdeacon-type embeddings of the complete multi-
partite graph K'»; into orientable surfaces. We then show that
the automorphism group of such embeddings is, in the generic
case, precisely Z,.
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Switching operation for 2-designs and
Hadamard matrices

D. Crnkovic®, A. Svob()
(1) University of Rijeka, Rijeka, Croatia

In this talk, we will present the switching operation for 2-
designs introduced in [1]. This switching operation can be adapted
for switching Hadamard matrices. Further, we show that this
switching can be applied to any Bush-type Hadamard matrix.

References

[1] D. Crnkovi¢, A. Svob, Switching for 2-designs, Des. Codes
Cryptogr. 90 (2022), 1585-1593.

42



Graham’s rearrangement for a class of
semidirect products

Simone Costa(!), Stefano Della FioreY), Eva R. Engel(z)

(1) Universita degli Studi di Brescia, Brescia 25123, Italy
(2) Princeton University, Princeton, NJ 08544, USA

A famous conjecture of Graham stated in 1971 asserts that for
any set A C Z, \ {0} there is an ordering as, ..., a4 of the ele-
ments of A such that the partial sums a1, a1+as,...,a1+as+...+
a)4| are all distinct. Before the recently improvements, the state
of the art was essentially that the conjecture holds when |A| < 12
and when A is a non-zero sum set of size p—1, p—2 or p—3. Many
of the arguments for small A use the Polynomial Method and rely
on Alon’s Combinatorial Nullstellensatz. Very recently, Kravitz
in [3], using a rectification argument, made a significant progress
proving that the conjecture holds whenever |A| < log p/loglog p.
A subsequent paper of Bedert and Kravitz [1] improved the log-
arithmic bound into a super-logarithmic one that is of the form
ecoen)'”* for some small constant ¢ > 0.

In [2], we use a similar procedure to obtain an upper bound of
the same type in the case of semidirect products Z, %, H where
¢ H — Aut(Z,) satisfies ¢(h) € {id, —id} for each h € H and
where H is abelian and each subset of H can be ordered such
that all of its partial products are distinct.
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Embedding partial Latin squares in Latin
squares with many mutually orthogonal mates

Diane Donovan™, Mike Grannell, E. Sule Yazici

(1) SMP, The University of Queensland, Brisbane, Australia

In this talk, I will review combinatorial constructions devel-
oped by Donovan, Grannell, and Yazici that verify that a pair of
(partial) orthogonal Latin squares of order n, can be embedded
in a set of ¢ + 2 mutually orthogonal Latin squares (MOLS) of
polynomial order in n, for any ¢ > 2. Notably, this construction
verifies, for the first time, the existence of a set of nine MOLS of
order 576, improving upon the earlier maximum of eight.

If time permits, I will also present earlier work by Donovan
and Yazici, which provides the first constructive, polynomial-
order embedding for a pair of orthogonal partial Latin squares.

44



G-designs for some graphs on seven edges
D. Banegas™), A. Carlson!), D. Froncek™®
(1) University of Minnesota Duluth, Duluth, USA

A G-design of order n is a collections of s edge disjoint graphs
G; isomorphic to G, whose union forms the complete graph K,.

We complement a recent result by Fron¢ek and Kubesa |[2]
by examining the remaining three disconnected bipartite graphs
with seven edges: on nine and ten vertices. While the result itself
is not too exciting, it provides an opportunity to present several
different methods for finding G-designs. For n = 0,1 (mod 14),
we use classical labeling methods introduced by Rosa [4] and
generalized by El-Zanati et al. [3] and Bunge [1].

For n =7 (mod 14), we first decompose K447 into K77 and
K4 — K7 and then each of them to G. For n =8 (mod 14), we
decompose K445 into the circulant Cir(14k+8;1,2, Tk+3, Tk+
4) and its complement and then use labelings for the complement
and labelings with some adjustments for the circulant.
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Steiner triple systems with Veblen points
Mario Galici®V
(1) University of Salento, Lecce, Italy

A Steiner triple system, STS(v), is a 2 — (v,3,1) design. A
Veblen point of an STS is a point for which any two other dis-
tinct points generate a Pasch configuration. Steiner triple sys-
tems given by the point-line design of a projective space PG(n, 2)
are precisely those in which every point is a Veblen point.

Steiner loops provide a natural algebraic framework for study-
ing Steiner triple systems. We focus on their Schreier extensions,
which offer an effective method for constructing Steiner triple sys-
tems with Veblen points. This concept was first introduced for
loops in general in 1], and later explored in the context of Steiner
loops in [2]|. In particular, in [3| we investigate Veblen points in
Steiner triple systems of orders 19, 27, and 31, determining their
number and giving concrete examples.
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On decomposition thresholds for odd-length
cycles

Darryn Bryant™), Peter Dukes?), Daniel Horsley®),
Barbara Maenhaut("), Richard Montgomery (¥

(1) University of Queensland, Brisbane, Australia
(2) University of Victoria, Victoria, Canada

(3) Monash University, Melbourne, Australia

(4) University of Warwick, Warwick, UK

An (edge) decomposition of a graph G is a set of subgraphs of
GG whose edge sets partition the edge set of GG. I will discuss our
recent proof that, for each odd ¢ > 5, any graph G of sufficiently
large order n with minimum degree at least (3 + 5745 + o(1))n
has a decomposition into ¢-cycles if and only if ¢ divides |E(G)]
and each vertex of G has even degree. This threshold cannot
be improved beyond % + ﬁ It was previously shown that the
thresholds approach % as ¢ becomes large, but our thresholds do
so significantly more rapidly. Our methods can be applied to
tripartite graphs more generally and we also obtain some bounds
for decomposition thresholds of other tripartite graphs.
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On relative simple Heffter spaces
L. Johnson® . L. Mella®, A. Pasotti(®)

(1) University of Bristol, Bristol, United Kingdom
(2) University of Modena and Reggio Emilia, Modena, Italy
(3) University of Brescia, Brescia, Italy

Let G be an abelian group and suppose that .J is a subgroup of
G of order t, a half-set V of G\J is a subset of G\ J such that for
each non-involution element x € G\J, either x or —z is contained
in V and any involution elements of G\.J are also contained in V.
An (nk, k), relative Heffter system is a partition of a half-set V/
of G\J into zero-sum blocks of equal size. Two (nk, k), relative
Heffter systems P and Q, based on the same half-set, are said to
be orthogonal if their blocks intersect in at most one element. In a
[1], we introduce the concept of a (nk, k;r), relative Heffter space,
which is a collection of r mutually orthogonal Heffter systems.
This definition naturally generalises the concepts of a relative
Heffter array and a Heffter space.

The density of a Heffter space refers to the density of the
collinear graph associated with the Heffter space. In the paper
this talk is based on [1], we present two constructions of infi-
nite families of relative Heffter spaces, that satisfy the additional
property of being globally simple. One of these constructions al-
ways achieves maximal density. By obtaining results on globally
simple Heffter spaces, [1] also obtains new results on mutually
orthogonal cycle decompositions and biembeddings of cyclic cy-
cle decompositions of the complete multipartite graph into an
orientable surface.
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On directed Oberwolfach problem with tables
of even lengths

Alice Lacaze-Masmonteil!)

(1) Department of Mathematics and Statistics, University of Regina

A (6m17 émQ, o ,émt)—factor of a directed graph G is a span-
ning subdigraph of G comprised of ¢ disjoint directed cycles of
lengths mqy, mo, ..., m;, where m; > 2. In this talk, we will be
constructing a decomposition of the complete symmetrlc digraph
K3, into (Cn,, Conys - - - Crn, )-factors when my +my+- - - +my, =
2n, t > 3, and n is odd. The existence of this decompos1t10n
implies a complete solution to the directed Oberwolfach problem
with t tables of even lengths and 2n guests such that n is odd.
This is joint work with Andrea Burgess and Peter Danziger.
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Further constructions of square integer relative
Heffter arrays

Diane Donovan®, Sarah Lawson), James Lefevre(!)

(1) The University of Queensland, Brisbane, Australia

Heffter arrays are a fascinating combinatorial object intro-
duced by Archdeacon in 2015 [1] and later generalized to relative
Heffter arrays by Costa et al. in 2019 [2|. In this talk, I will
focus on square integer relative Heffter arrays, which are n x n
arrays where each row and column contains the same number of
entries, the sum of each row and column is zero and where, given
the subgroup J of size ¢, every nonzero element of Zo,x1¢ \ J ap-
pears exactly once up to sign. There are many open problems
regarding the existence of these arrays. I will focus on arrays that
contain a primary transversal, a transversal of the set {1,...,n}
up to sign. I will present a new family of square integer relative
Heffter arrays along with complete results for their existence for
n prime and k = 3|3].
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Balanced generalized kite designs

Paola Bonacini™, Lucia Marino(!)

(1) University of Catania — Department of Mathematics and Infor-
matics, Italy

In this work, we study valuations and labelings of bipartite
graphs and their applications to cyclic graph designs. In par-
ticular, we introduce the notion of (A, B)-ordered and uniformly
ordered labelings for a bipartite graph G = (V, E) with partition
classes A and B. Using these labelings, we construct (A, B)-
uniformly ordered labelings and describe how shifts of the label-
ing modulo 7 + 1 preserve certain ordering properties.

Our main result is a constructive method for cyclic (C,, +
P,.1)-designs of order v, where v = 1 mod 2(m + n). These
results illustrate the interplay between ordered labelings of bi-
partite graphs and the construction of balanced generalized kite
designs.
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Cycle decompositions of circulants C(n, {1, 3})

Juliana Palmen®

(1) AGH University, Cracow, Poland

A decomposition of a graph G is a collection of edge-disjoint
subgraphs H,, Hs, ..., H; of G such that each edge of G belongs
to exactly one H;. We call this collection a k-factorization when
every H; is a k-regular spanning subgraph of G.

For a positive integer n and a set S C {1,...,[(5])} a cir-
culant C(n,S) is a graph G = (V, E) such that V = Z, and
E = {{u,v} : §(u,v) € S} where §(u,v) = min{£|u — v|
(mod n)}.

Some results on decomposition of those graphs into cycles
were obtained. Inspired by the work of Bryant and Martin [1],
who gave a complete solution for the cycle decomposition of
C(n,{1,2}), we examine the case when S = {1,3}. Among oth-
ers, we present the results on decomposition of C(n,{1,3}) into
cycles of odd lengths and into cycles of even lengths.

In [2] Bryant showed that, whenever n > 5, there exists a 2-
factorization of C'(n,{1,2}) in which one factor is a Hamiltonian
cycle and the other factor is isomorphic to any given 2-regular
graph of order n. We discuss some open problems concerning the
2-factorization of C'(n,{1,3}).
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Constructing magic objects

M.A. Pellegrini()

(1) Universita Cattolica del Sacro Cuore, Brescia, Italy

In this talk I will describe some techniques that can be used
to construct different magic objects such as signed magic arrays
SMA(m,n; s, k), magic rectangle sets MRS(m, n; s, k; ¢) and in-
teger Heffter arrays H(m, n; s, k). In the first two cases, we have
determined necessary and sufficient conditions for their existence
(see [1, 2|), while for integer Heffter arrays the problem is still
open for some small values of k (see [4]). Also, I will describe
some constructions of [-magic rectangle sets MRSr(m, n; s, k; ¢),
where I is a finite abelian group (see |3]).
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On large Sidon sets

Ingo Czerwinski(!), Alexander Pott()

(1) Otto von Guericke University Magdeburg, Germany

A (binary) Sidon set M is a subset of F, such that the sum
of four distinct elements of M is never 0. The goal is to find
Sidon sets of large size. In this talk we show that the graphs
of almost perfect nonlinear (APN) functions with high linearity
can be used to construct large Sidon sets. Thanks to recently
constructed APN functions [[1, 2]|F5 — F3 with high linearity,
we can construct Sidon sets of size 192 in F3°, where the largest
sets so far had size 152. This result will be published in the
Journal of Combinatorial Theory (A).
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Exploring the Oberwolfach problem through
solutions with non trivial automorphism group

Gloria RinaldiV)

(1) University of Modena and Reggio Emilia, Italy

The Oberwolfach Problem, originally posed by Ringel in 1967,
asks for a decomposition of complete graphs into 2-factors of
prescribed isomorphism type. A recent asymptotic result (2021,
Glock et al.) guarantees the existence of solutions provided that
the total number of vertices is sufficiently large, yet, the possibil-
ity of determining explicit and constructible solutions for every
configuration remains an open problem. Searching for solutions
with a non trivial automorphism group may aid in constructing
explicit examples, both in the classical setting and in variants
obtained by adding or removing a repeatd 1—factor from the
complete graph.
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Distinct Difference Configurations

Emma Smith®)

(1) Royal Holloway, University of London, United Kingdom

A subset D of a group is a Distinct Difference Configuration
(DDQ) if the differences g~'h are distinct, where g and h range
over all (ordered) pairs of distinct elements of D. When devel-
oped over the group, the resulting blocks form a 2 — (|G|, |D|, 1)
packing.

DDCs also have practical applications in key predistribution
schemes for wireless sensor networks, especially when the net-
work’s communication structure mirrors the Cayley graph of a
group. In such a scheme, using a bounded DDC ensures an effi-
cient trade-off between local connectivity and global security.

This talk will also cover joint work with Luke Stewart and
Simon Blackburn where we show that large, bounded DDCs ex-
ist in free groups, extending the theory beyond abelian or finite
settings.
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On some new regular digraphs from finite
groups

A. Svob® | A. E. Brouwer, D. Crnkovi¢®), T. Zrinski(®,
M. Zubovi¢ Zutolija("

(1) University of Rijeka, Rijeka, Croatia

In this talk, we describe a construction of certain regular di-
graphs using finite simple groups. We introduce the notion of
orbit matrices of digraphs and point out some interesting results
obtained using specific linear groups. In particular, we present
the first example of a directed strongly regular graph with param-
eters (63,11,8,1,2) along with several other new directed strongly
regular graphs obtained from finite simple groups. The talk is
based on the papers [1, 2, 3].
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An explicit lower bound on the largest cycle
for the solvability of the Oberwolfach problem

T. Traettal)

(1) University of Brescia, Italy

The Oberwolfach problem OP(F'), posed by Ringel in 1967,
asks for a decomposition of the complete graph K, into copies
of a given 2-regular graph F' of odd order v. Some recent non-
constructive results |2, 4| provide an asymptotic proof of the solv-
ability of OP(F") for sufficiently large orders, but leave the specific
lower bound for v unquantified.

In this talk, we present a method to build solutions to OP(F)
whenever F' has a cycle of length greater than an explicit lower
bound [5], thereby partially filling this gap. Our constructions
combine the amalgamation-detachment technique [3] with meth-
ods for building suitable decompositions of K, having an auto-
morphism group with a nearly-regular action on the vertices [1].
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Domination type parameters in 3-regular and
4-regular graphs

Michael A. Henning(l)

(1) University of Johannesburg, Johannesburg, South Africa

A set S of vertices in a graph G is a dominating set if every
vertex in V(G) \ S is adjacent to a vertex in S. The domina-
tion number, (G), of G is the minimum cardinality among all
dominating set in G. We discuss best possible upper bounds
on domination-type parameters in cubic graphs. Among other
results, we show that if G is a cubic graph of order n, then
Y2(G) < 2n and 7,(G) < 2n, where %2(G) and 7,(G) denote
the semitotal and restrained domination numbers, respectively.
The %—conjecture for domination in 4-regular graphs states that if
G is a 4-regular graph of order n, then y(G) < %n We prove this
conjecture when G has no induced 4-cycle. A thorough treatise
on dominating sets can be found in [1, 2, 3|.
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On proper secondary and multiple dominating
sets

Pawel Bednarz(!) | Adrian Michalski()

(1) Rzeszow University of Technology, Rzeszow, Poland

Let & > 1 be an integer. A subset D C V(G) is (1,k)-
dominating if for every vertex v € V(G) \ D there exist vertices
u,w € D such that wv € E(G) and dg(v,w) < k. If k = 1, then
we obtain the definition of (1,1)-dominating sets, which are also
known as 2-dominating sets. If k& = 2, then we have the concept
of (1,2)-dominating sets.

In [1] Michalski et al. introduced the concept of proper (1,2)-
dominating sets to distinguish (1,2)-dominating sets from (1,1)-
dominating sets. Formally, a proper (1,2)-dominating set is a
(1,2)-dominating set that is not (1,1)-dominating. Basing on this
idea, we considered proper (1,3)-dominating sets. Moreover, in
[2, 3] proper l-dominating sets i.e. [-dominating sets which are
not (I 4+ 1)-dominating were defined and studied.

In this talk we present some results concerning proper sec-
ondary and multiple dominating sets, in particular we focus on
the problem of their existence. Moreover, we show relations be-
tween parameters of these types of domination.
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Isolation of graphs
Peter Borg(!)
(1) University of Malta, Msida, Malta

Given a set F of graphs, we call a copy of a graph in F an F-
graph. The F-isolation number of a graph G, denoted by (G, F),
is the size of a smallest subset D of the vertex set of G such
that the closed neighbourhood N[D] of D intersects the vertex
sets of the F-graphs contained by G (equivalently, G — N[D]
contains no F-graph). When F consists of a 1-clique, (G, F)
is the domination number of G. When F consists of a 2-clique,
1(G,F) is the vertex-edge domination number of G. The study
of the general F-isolation problem was introduced by Caro and
Hansberg [4] in 2017. This study is expanding very rapidly. A
brief account of its development and of the speaker’s recent work
in this field [1, 2, 3] will be provided.
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2-Rainbow Independent Domination in
Complementary Prisms

Dragana Bozovic(M), Gordana Radi¢(M?)| Aleksandra Tepeh(1:2)

(1) University of Maribor, Faculty of Electrical Engineering and Com-
puter Science, Korogka cesta 46, 2000 Maribor, Slovenia

(@) Institute of Mathematics, Physics and Mechanics, Jadranska ulica
19, 1000 Ljubljana, Slovenia

A function f that assigns values from the set {0, 1,2} to each
vertex of a graph G is called a 2-rainbow independent dominating
function, if the vertices assigned the value 1 form an independent
set, the vertices assigned the value 2 form another independent
set, and every vertex to which 0 is assigned has at least one
neighbor in each of the mentioned independent sets. The weight
of this function is the total number of vertices assigned nonzero
values. The 2-rainbow independent domination number of G,
Yi2(G), is the minimum weight of such a function.

We study the 2-rainbow independent domination number of
the complementary prism GG of a graph G, which is constructed
by taking G' and its complement G, and then adding edges be-
tween corresponding vertices. We provide tight bounds for
7i2(GG), and characterize graphs for which the lower bound, i.e.
max{Vio(G), %ui2(G)} + 1, is attained.
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An algorithmic proof for the
domination number of grid graphs

Yao-Ting Shen™, Chiuyuan Chen®

(1) National Yang Ming Chiao Tung University, Hsinchu, Taiwan

The domination number v(G) of a graph G is the minimum
cardinality of a dominating set of G. Let the notion [i] denote
the set {1,2,...,i}. Let G,,, denote the complete (m,n) grid;
i.e., the vertex set of Gy, ,, is [m] X [n], and two vertices (¢, j) and
(', ') are adjacent if |i —i'| + |j — j'| = 1. Reference [1| proves
that for every 16 <m <n, v(Gpmn) = LWJ — 4 and thus

concludes the calculation of v(G,,,) of all (m,n) grid graphs.
In this study (a preliminary version was in [2]), we consider the
charging pad deployment problem (CPDP) for wireless recharge-
able sensor networks with grid topology G,,,. CPDP aims to
find a deployment of charging pads for the unmanned aerial ve-
hicle (UAV) so that every sensor node is covered by at least one
pad and the number of pads is as small as possible. Note that
Gmm = Grt1nt1. We show that when the grid length £ satisfies
\/Lidg < L< \/lgdg, CPDP is related to finding v(Gy,.n), where dy
is the maximum flying distance of the UAV when its energy is ¢
(a pre-defined energy threshold). We propose a charging pad de-
ployment scheme for G, , and prove that for every 15 <m <n,
our scheme uses the least number of pads; this provides an algo-
rithmic proof for the domination number of grid graphs.
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2-Domination edge subdivision in trees

M. Dettlaff(). M.A. Henning®, M. Lemariska®, A. Roux®,
J. Topp®

(1) University of Gdansk, Gdarnsk, Poland

(2) University of Johannesburg, Johannesburg, South Africa
(3) Gdansk University of Technology, Gdansk, Poland

(4) Stellenbosch University, Stellenbosch, South Africa

(5) University of Applied Sciences, Elblag, Poland

A set S of vertices in a graph G is a 2-dominating set of G if ev-
ery vertex not in S has at least two neighbors in S, where two ver-
tices are neighbors if they are adjacent. The 2-domination num-
ber of G, denoted by ~5(G), is the minimum cardinality among
all 2-dominating sets in G. A ~s-set of GG is a 2-dominating set
of G of cardinality v5(G). The 2-domination subdivision number
of G, denoted by sds(G), is the minimum number of edges which
must be subdivided in order to increase the 2-domination num-
ber. If T'is a tree of order n > 3, then sdo(7') < 2. In [1] we show
that sd2(7") = 1 if and only if the set of vertices that belong to no
~vo-set of G is nonempty. A graph G is y,-g-critical if ¢ is the least
number such that for every subset of edges S of cardinality ¢, the
graph produced by subdivision of S has a greater 2-domination
number. If T"is a ~,-g-critical tree of order n > 3, then we prove
that ¢ < n—2. Among other results, we characterize ,-g-critical
trees when ¢ is large, namely ¢ € {n —4,n — 3,n — 2}. We also
characterize yo-1-critical trees [1] and ~y,-2-critical trees [2].

References

[1] M.Dettlaff, M.A.Henning, M.Lemarnska, A.Roux, J.Topp, 2-
Domination edge subdivision in trees, Australas. J. Combin.
to appear.

[2] M.Dettlaff, M.A.Henning, M.Lemanska, A.Roux, 2-
Domination critical trees upon edge subdivision, Australas. J.
Combin. 92(3) (2025), 357—381.

66



Complexity of Defensive Domination
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In a graph G, a k-attack A is any set of at most k vertices
and (-defense D is a set of at most ¢ vertices. We say that de-
fense D counters attack A if each a € A can be matched to a
distinct defender d € D with a equal to d or a adjacent to d
in G. In the defensive domination problem, we are interested in
deciding, for a graph G and positive integers k£ and ¢ given on
input, if there exists an (-defense that counters every possible
k-attack on G. Defensive domination is a natural resource allo-
cation problem and can be used to model network robustness and
security, disaster response strategies, and redundancy designs.

The defensive domination problem is naturally in the com-
plexity class X5. The problem was known to be NP-hard in
general, and polynomial-time algorithms were found for some re-
stricted graph classes. In this note, we prove that the defensive
domination problem is ¥5-complete.

We also introduce a natural variant of the defensive domi-
nation problem in which the defense is allowed to be a multiset
of vertices. This variant is also ¥.5-complete, but we show that
it admits a polynomial-time algorithm in the class of interval
graphs. A similar result was known for the original setting in the
class of proper interval graphs.
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On rainbow domination regular graphs

Bostjan Kuzman)
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In [1], a d-regular graph X is called d-rainbow domination
regular or d-RDR, if its d-rainbow domination number 7,.(X)
attains the lower bound n/2 for d-regular graphs, where n is the
number of vertices. In [2|, some combinatorial constructions to
construct new d-RDR graphs from existing ones are given and
two general criteria for a vertex-transitive d-regular graph to be
d-RDR are proven. A list of vertex-transitive 3-RDR graphs
of small orders is then produced and their partial classification
into families of generalized Petersen graphs, honeycomb-toroidal
graphs and a specific family of Cayley graphs is given by inves-
tigating the girth and local cycle structure of these graphs. In
the talk, some more recent results and open problems on d-RDR
graphs will be presented.
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Paired versus double domination in forbidden
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A set D of vertices in a graph G is a dominating set of G
if every vertex not in D has a neighbor in D, where two ver-
tices are neighbors if they are adjacent. If the dominating set
D of G has the additional property that the subgraph induced
by D contains a perfect matching (not necessarily as an induced
subgraph), then D is a paired dominating set of G. The paired
domination number of G, denoted by 7,.(G), is the minimum
cardinality of a paired dominating set of G. A set D C V(G) is
a double dominating set of G if every vertex in V(G) \ D has at
least two neighbors in D, and every vertex in D has a neighbor in
D. The double domination number of G, denoted by 7x2(G), is
the minimum cardinality of a double dominating set of G. Chel-
lali and Haynes [2]| showed that if G is a claw-free graph without
isolated vertices, then the paired domination number of G is at
most the double domination number of G. In this paper, we show
that if G is a H-free graph for some H € {P5,2K, U K, fork}
without isolated vertices, then ,,.(G) < vx2(G).
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Perfect (1,2)-Dominating Sets in Graphs with a
Few Large-Degree Vertices

M. Pirga®
(1) Rzeszow University of Technology, Poland

Let £k > 1 be an integer. A subset D C V(G) is a (1,k)-
dominating set if for every vertex v € V(G)\ D there exist u,w €
D such that wv € E(G) and dg(v,w) < k. The concept of
(1,2)-dominating sets was introduced in [1] and further studied
in [2, 3], where A. Michalski defined a proper (1,2)-dominating
set as a (1, 2)-dominating set that is not (1, 1)-dominating. Based
on this idea, in [4] we introduced a perfect (1,2)-dominating set
(shortly (1,2)-PDS) as a (1,2)-dominating set in which every
vertex outside D is adjacent to exactly one vertex of D.

In this talk, we investigate the existence of (1,2)-PDS in
graphs containing at most two vertices of maximum degree. In

particular, we provide a complete characterization for the cases
A(G)=n—1and A(G) =n—2.
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Disjoint dominating and 2-dominating sets in
graphs: Hardness and Approximation results
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(2) Department of Mathematics, Indian Institute of Technology Madras,
India

A set D CV of a graph G = (V, E) is a dominating set of G
if each vertex v € V '\ D is adjacent to at least one vertex in D,
whereas a set Dy C V is a 2-dominating (double dominating) set
of G if each vertex v € V'\ Dy is adjacent to at least two vertices
in Dy. A graph G is a DDo-graph if there exists a pair (D, Dy) of
disjoint dominating set and 2-dominating set of G. In [1], several
open problems related to DDs-graphs were posed. In this paper,
we answers some of these problems and present the following
results: we provide an approximation algorithm for the problem
of determining a minimal spanning DDsy-graph of minimum size
(MIN-DD,) with an approximation ratio of 3; a minimal spanning
DDy-graph of maximum size (MAX-DD,) with an approximation
ratio of 3; and the smallest number of edges which when added
to a non-DDs-graph results in a minimal spanning DDs-graph
for any graph (MIN-TO-DD;) with an O(logn) approximation
ratio. Additionally, we prove that MIN-DDy and MAX-DD, are
APX-complete for graphs with maximum degree 4. Moreover,
for a 3-regular graph, we show that MIN-DD, and MAX-DD, are
approximable within a factor of 1.8 and 1.5 respectively.
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Induced cycles vertex number vs.
(1,2)-domination in cubic graphs
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A (1,2)-dominating set in a graph G is a set S such that
every vertex outside S has at least one neighbor in S, and each
vertex in S has at least two neighbors in S. The (1, 2)-domination
number, v, 2(G), is the minimum size of such a set, while c¢ipq(G)
is the cardinality of the largest vertex set in G that induces one or
more cycles. In this paper, we initiate the study of a relationship
between these two concepts and discuss how establishing such a
connection can contribute to solving a conjecture on the lower
bound of ¢;,q(G) for cubic graphs. We also establish an upper
bound on ¢,q(G) for cubic graphs and characterize graphs that
achieve this bound.
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Outdegree conditions forcing directed cycles
A. Grzesik® | J. Jaworska(®), P. Kuc®

1) Jagiellonian University, Krakéw, Poland

In 2010, Kelly, Kithn and Osthus [2] made a conjecture on the
minimum semidegree which forces an oriented graph to contain
a directed cycle of a given length at least 4. The conjecture was
proven by its authors for cycles of length not divisible by 3 and
in [1] for other cycles. We consider an analogous problem, but
without the assumption on the minimum indegree, and prove
an optimal bound on the minimum outdegree which forces an
oriented graph to contain a directed cycle of a given large enough
length.
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Largest planar graphs of diameter 3 and fixed
maximum degree
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The degree diameter problem asks for the maximum possible
number of vertices in a graph of maximum degree A and diam-
eter D. In this paper, we focus on planar graphs of diameter
3. Fellows, Hell and Seyffarth [1] proved that for all A > 8,
the maximum number np, p of vertices of a planar graph with
maximum degree at most A and diameter at most 3 satisfies
JA -3 <npps < 8A+12. We show that the given lower bound
is tight up to an additive constant, by proving that there exists
a constant ¢ > 0 such that np, 5 < gA + ¢ for every A > 0. Our
proof consists in a reduction to the fractional maximum match-
ing problem on a specific class of planar graphs, for which we
show that the optimal solution is 2, and characterize all graphs

27
attaining this bound.
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Extremal problems on planar graphs
E. GyéritV)
(1) Renyi Institute of Mathematics, Budapest, Hungary

Let exp(n,T, H) denote the maximum number of copies of
T in an n-vertex planar graph which does not contain H as a
subgraph. When T' = Ky, exp(n, T, H) is the planar Turan num-
ber of H, denoted by exp(n, H). The topic of extremal planar
graphs was initiated by Dowden (2016) [1|. He obtained sharp
upper bound for both exp(n, Cy) and exp(n, Cs). In [2], we gave
a sharp upper bound exp(n,Cg) < %n — 7, for all n > 18. We
also pose a conjecture on exp(n, Cy), for k > 7.

We [3] proved that for every integer n > 6, exp(n,Cs, () is
202 — 10n + 12 + L,,_r.

And (see |4]) for every fixed k > 3, exp(n, Co, ) is n*/k* +
o(n*). Tn this lecture, we present more recent similar results
related to cycles and paths.
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On the Turan number of the expansion of the
t-fan
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(4) Shanghai University, Shanghai, China.

The t-fan, F}, is the graph on 2t + 1 vertices consisting of
t triangles that intersect at exactly one common vertex. For a
given graph F', the r-expansion F" of F is the r-uniform hyper-
graph obtained from F' by adding r — 2 distinct new vertices
to each edge of F. The Turdn number of an r-uniform hyper-
graph H, ex,.(n,H), is the maximum number of hyperedges an
r-uniform n-vertex hypergraph can have without containing H
as a subhypergraph. We determine the Turdn number of the 3-
expansion of the t-fan for sufficiently large n. Namely, we show

that exs(n, 77) = () — ("5)-
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Unavoidable subgraphs in digraphs with large
out-degrees

Tomés Hons™), Tereza Klimosova(? | Gaurav Kucheriya(®,
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We ask the question, which oriented trees 7" must be con-
tained as subgraphs in every finite directed graph of sufficiently
large minimum out-degree. We formulate the following simple
condition: all vertices in T" of in-degree at least 2 must be on the
same ‘level” in the natural height function of 7. We prove this
condition to be necessary and conjecture it to be sufficient. In
support of our conjecture, we prove it for a fairly general class of
trees.

An essential tool in the latter proof, and a question interesting
in its own right, is finding large subdivided in-stars in a directed
graph of large minimum out-degree. We conjecture that any di-
graph and oriented graph of minimum out-degree at least k¢ and
k€/2, respectively, contains the (k — 1)-subdivision of the in-star
with ¢ leaves as a subgraph; this would be tight and generalizes
a conjecture of Thomassé. We prove this for digraphs and k£ = 2
up to a factor of less than 4.
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Random embeddings of bounded degree trees
with optimal spread
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(1) University of Oxford
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A seminal result of Komlos, Sarkozy, and Szemerédi [1] states
that any n-vertex graph G' with minimum degree at least (1/2 +
a)n contains every n-vertex tree 7' of bounded degree. Recently,
Pham, Sah, Sawhney, and Simkin [2]| extended this result to show
that such graphs G in fact support an optimally spread distri-
bution on copies of a given T, which implies, using the recent
breakthroughs on the Kahn-Kalai conjecture, the robustness re-
sult that 7" is a subgraph of sparse random subgraphs of G as
well. Pham, Sah, Sawhney, and Simkin construct their opti-
mally spread distribution by following closely the original proof
of the Komlos-Sarkézy-Szemerédi theorem which uses the blow-
up lemma and the Szemerédi regularity lemma. We give an alter-
native, regularity-free construction that instead uses the Komlos-
Sarkozy-Szemerédi theorem (which has a regularity-free proof due
to Kathapurkar and Montgomery) as a black-box. Our proof is
based on the simple and general insight that, if G has linear min-
imum degree, almost all constant sized subgraphs of G inherit
the same minimum degree condition that G has.
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Constructions of Turan systems that are tight
up to a multiplicative constant
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The Turén density t(s,r) is the asymptotically smallest edge
density of an r-graph for which every set of s vertices contains at
least one edge. The question of estimating this function received
a lot of attention since it was first raised by Turan in 1941. A
trivial lower bound is ¢(s,r) > 1/(,° ). In the early 1990s, de
Caen [1] conjectured that ¢(r+1,7) grows faster than O(1/r) and
offered 500 Canadian dollars for resolving this question.

I will give an overview of this area and present a construction
from [2] disproving this conjecture by showing more strongly that
for every integer R there is C' such that t(r + R,7) < C/("tf),
that is, the trivial lower bound is tight for every fixed R up to a
multiplicative constant C' = C'(R).
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Distinct degrees and homogeneous sets in
graphs
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(2) University of Birmingham, UK

In this talk we investigate the extremal relationship between
the order of a largest homogeneous set (clique or independent set)
in a graph G and the maximal number of distinct degrees that
appear in an induced subgraph of G, denoted by hom(G) and
f(G) respectively. This topic has been well studied by several
researchers over the last 40 years, beginning with Erdds, Faudree
and S6s in the regime when hom(G) = O(log|G|).

Our main theorem asymptotically settles this question, im-
proving on multiple earlier estimates. More precisely, we show
that any n-vertex graph G satisfies:

min | ¢ n? n -poM
1@ = ( hom(G) ’ hom(G)) "

This relationship is tight (up to the n°") term) for all possible
values of hom(G), as demonstrated by appropriately generated
Erdés—Renyi random graphs. Our approach to lower bounding
f(G) proceeds via a translation into an (almost) equivalent prob-
abilistic problem, which is effective for arbitrary graphs.
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Cycle lengths in graphs of given minimum
degree
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(1) Northwestern Polytechnical University, Xi’an, China
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We present minimum degree conditions which forces a graph
to contain a cycle of length ¢ modulo k for fixed £ and ¢. Our
outcomes improve the results of Gao, Huo, Liu and Ma [1]. Con-
sequently, we determine the maximum number of edges in a graph
that does not contain a cycle of length 0 modulo k for odd &.
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Antidirected paths in oriented graphs

Andrzej Grzesik(®) | Marek Skrzypczyk™®)
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We show that for any integer k£ > 4, every oriented graph
with minimum semidegree bigger than %(k‘— 14++vk — 3) contains
an antidirected path of length k. Consequently, every oriented
graph on n vertices with more than (k — 1 + vk — 3)n edges
contains an antidirected path of length k. This asymptotically
proves the antidirected path version of a conjecture of Stein and
of a conjecture of Addario-Berry, Havet, Linhares Sales, Reed
and Thomassé, respectively.
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Gauss words and rhythmic canons
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A rhythmic canon is a combinatorial structure consisting of
repeating copies of the same motif. These copies may be vari-
ously transformed and their placement on the time-line can also
be quite arbitrary. Thus, a purely abstract rhythmic canon can
be identified with an ordered hypergraph on the set of vertices
{1,2,...,n} whose edges correspond to the transformed copies
of the leading motif. If the edges partition the set of vertices (a
hypergraph is a perfect matching), then it is convenient to repre-
sent the canon by a word with same letters occupying positions
of a fixed copy of the motif. If all copies are of the same size
(a hypergraph is uniform), then each letter in the word occurs
the same number of times. Words with this property are called
Gauss words, in honor of the researcher who first used them in
studying self-crossing curves on the plane.

There are many exciting problems about rhythmic canons. 1
will present a few of them during the talk. To get a foretaste, con-
sider the following puzzle invented by Tom Johnson, a composer.
Take a look at the word

ABCDCBCADBEFEEDA.

It is an example of a perfect rhythmic canon K(5,3), that is,
a tiling of the interval into five 3-term arithmetic progressions,
each with a distinct gap. There are no such canons with two,
three, four or six progressions, but it is known that K(n,3) exist
for all 7 < n < 19. In particular, there are 9257051746 different
canons K (19,3). Is it true that for every n > 7 there is at least
one perfect rhythmic canon K(n,3)? Perfect canons K(n,4),
built of 4-term arithmetic progressions of pairwise different gaps,
are known to exist for all 15 < n < 23. In particular, there
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are 19490 different canons K(23,4). What about canons K (n,r)
with » > 57 Do they exist for every fixed r and arbitrarily large
n?
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On b-acyclic chromatic number of cubic and
subcubic graphs
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Let G be a graph. An acyclic k-coloring of G is a map c :
V(G) — {1,...,k} such that c(u) # c(v) for any wv € E(G)
and the subgraph induced by the vertices of any two colors 7, j €
{1,...,k} is a forest. If every vertex v of a color class V; misses
a color £, € {1,...,k} in its closed neighborhood, then every
v € V; can be recolored with ¢, and we obtain a (k — 1)-coloring
of G. Tf a new coloring ¢ is also acyclic, then such a recoloring
is an acyclic recoloring step and ¢ is in relation <, with ¢. The
acyclic b-chromatic number A,(G) of G is the maximum number
of colors in an acyclic coloring where no acyclic recoloring step is
possible. Equivalently, it is the maximum number of colors in a
minimum element of the transitive closure of <,. In this talk, we
develop the results presented in [1| by considering A,(G) of cubic
and subcubic graphs.
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First-Fit Coloring of Forests in Random
Arrival Model
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We study the performance of the First-Fit coloring algorithm
on forests in the random arrival model. While this algorithm is
known to use ©(logn) colors in the worst-case (adversarial) on-
line model, its average-case performance under a random vertex
permutation has been less understood.

We close this gap by providing tight asymptotic bounds. We
show that for any forest with n vertices, the expected number of
colors used by First-Fit is at most (1 4 o(1))%. Furthermore,
we prove this bound is optimal by constructing a family of forests
that requires (1 — o(1))Z2% colors in expectation. Our result
precisely characterizes the performance of First-Fit for this graph
class, showing a modest but significant gain over the adversarial

setting.
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On the distinguishing chromatic number in
hereditary graph classes
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The distinguishing chromatic number of a graph G, denoted
by xp(G), is the minimum number of colours in a proper vertex
colouring of G that is preserved by the identity automorphism
only. Collins and Trenk proved xp(G) < 2A(G) for any con-
nected graph G, and that equality holds for complete balanced
bipartite graphs K, , and for Cs.

In this talk, we show that the upper bound on xp(G) can be
substantially reduced if we forbid some small graphs as induced
subgraphs of GG, that is, we study the distinguishing chromatic
number in some hereditary graph classes.
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Packing List-Colorings and the Proper
Connection Number of Connected Graphs

Sebastian Czerwinski(!)

(1) University of Zielona Gora, Institute of Mathematics, Poland

The proper connection number of a connected graph G is the
minimum number of colors ¢ required for a proper connected t-
coloring of G; that is, an edge coloring of G such that between
every pair of distinct vertices there exists a properly colored path.

We also consider list and list-packing versions of this number.
Given a list L-edge-assignment of G, with |L| = k, an L-packing
proper connected coloring of GG is a collection of k£ mutually dis-
joint proper connected colorings ¢y, ca, ..., ¢, of the edges of G
that is, these colorings satisfy the conditions that for every ver-
tex v € V(G) we have ¢;(v) € L(v), and ¢;(v) # ¢j(v) whenever
i 7.

We discuss the origin of list-packing colorings and provide
new results on this topic.
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Interval colouring of oriented graphs

Ewa Drgas-Burchardt™®)

(1) University of Zielona Gora, Zielona Gora, Poland

An oriented graph is interval colourable if it admits an arc
colouring with integers such that, for every vertex, the integers
assigned to the in-arcs incident to this vertex are pairwise dis-
tinct, the integers assigned to the out-arcs incident to this vertex
are also pairwise distinct, and both of these sets form intervals
of integers. Since there exist oriented graphs that are not in-
terval colourable, we analise the interval colouring reorientation
number of an oriented graph D, denoted by icr(D), defined as
the minimum number of arcs of D that should be reversed so
that a resulting oriented graph is interval colourable.

In this talk, we present properties and constraints of the in-
terval colouring reorientation number, as well as its connections
to other well-known parameters studied in the theory of graphs
and digraphs.
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Totally Locally Irregular Decompositions of
Graphs

Anna Flaszczynska(!) | Aleksandra Gorzkowska(!), Igor Grzelec(!),
Alfréd Onderko®, Mariusz Wozniak™®)

(1) AGH University, Cracow, Poland
(2) p.J. Safarik University, Kosice, Slovakia

A locally irregular graph is a graph in which all adjacent ver-
tices have distinct degrees. In article [1], the authors described
the minimum number of locally irregular subgraphs into which a
graph can be decomposed. This can be viewed as a graph color-
ing, where each color corresponds to a locally irregular subgraph.
In [1], a total version of this problem is also defined.

In the problem of totally locally irregular decomposition of
graphs, we aim to find the minimum number of colors in a to-
tal coloring of the graph such that, within each color class, all
adjacent vertices have distinct total degrees.

References

[1] O. Baudon, J. Bensmail, J. Przybyto, M. Wozniak, On de-
composing regular graphs into locally irregular subgraphs, Fu-
ropean Journal of Combinatorics, 2015, 49, pp. 90-104.

90



Packing coloring of graphs with long paths

H. Furmanczyk®, D. Géziipek®), S. Ozkan(?)

(1) University of Gdarisk, Gdansk, Poland
(2) Gebze Technical University, Gebze, Turkey

A packing coloring of a graph G is a mapping ¢ : V(G) — N
such that any two distinct vertices assigned color ¢ are at distance
greater than ¢ in G. This generalizes classical proper coloring by
incorporating distance constraints that grow with the color index.
The smallest integer k for which such a coloring exists using colors
1,...,k is called the packing chromatic number, denoted x,(G).

We define a new class of graphs called path-aligned graph prod-
ucts, denoted by P,0;G. Let n and [ be positive integers such
that [ | n, and let G be a connected vertex-transitive graph that
contains a path P, as a subgraph.The graph P, ;G is constructed
as follows.

e Start with the path P,, with vertex sequence vy, vs, ..., v,.

e Partition P, into n/l consecutive, disjoint subpaths of length
[, i.e., the i-th subpath is PZ(Z) = (Vi-1)i41,---,vy) for i =
1,2,...,n/l.

e For each 1, take a copy G® of the graph G, and identify
the subpath PZ(Z) C P, with a fixed copy of P, C G. That
is, the vertices of Pl(i) are merged with the corresponding
vertices of the embedded path P, in G®.

We investigate the packing chromatic number y,, of such con-
structions for various choices of GG, including cycles and complete
graphs, and determine exact values or bounds in these cases. Fur-
thermore, we extend our results to selected classes of corona prod-
ucts, including generalized coronas, which share similar align-
ment properties.
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Odd Coloring: Complexity and Algorithms

Rumki Ghosh®, B. S. Panda(®)

(1) Department of Mathematics, Indian Institute of Technology Delhi,
Hauz Khas, New Delhi 110016, INDIA

An odd k-coloring of a graph G = (V, E) is a proper k-coloring
of GG such that for every non-isolated vertex v € V, there exists
at least one color that appears an odd number of times in the
open neighborhood of v. The minimum £ for which G admits
an odd k-coloring is called the odd chromatic number of G and
is denoted by x,(G). Given a graph G and a positive integer
k, DECIDE ODD COLORING PROBLEM is to decide whether G
admits an odd k-coloring. DECIDE ODD COLORING PROBLEM
is known to be NP-complete for general graphs [1]. In this paper,
we strengthen this hardness result by proving that DECIDE ODD
COLORING PROBLEM remains NP complete for dually chordal
graphs. On the positive side, we prove that for any proper interval
graph G, the odd chromatic number satisfies w(G) < x,(G) <
w(G) + 1. We further characterize the proper interval graphs
for which x,(G) = w(G), and those for which x,(G) = w(G) + 1.
We present a linear-time algorithm to compute the odd chromatic
number of block graphs. Finally, we prove that the odd chromatic
number of an interval graph G is either w(G) or w(G)+1. Further,
we characterize the interval graphs having x,(G) = w(G) and
Yo(G) = w(@) + 1.
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Computational and algebraic approaches to
open XOR-magic graphs

Sylwia Cichacz(!), Hubert Grochowski(®, Rita Zuazua(®)

(1) AGH University of Krakow, Krakow, Poland
(2) Warsaw University of Technology, Warsaw, Poland
(3) Universidad Nacional Auténoma de México, Mexico

A graph G = (V, E) with |V| = 2" is called (open) XOR-
magic graph, if it is connected and there exists a bijective labeling
0:V — (Zs)™ such that for each vertex v € V, sum of labels over
(open) closed neighborhood of v is equal to 0. This labeling is a
special case of group distance magic labeling of graphs.

Batal posed the following open problem: does it exist any
even regular XOR-magic or odd regular open XOR-magic graph?
In this talk, we will present positive answers to these questions,
as well as a generalization about the existence of such graphs of
order 2" for each n > 4. Furthermore, we will present obtained
algebraic approach to non-existence of open XOR-magic labelings
and its application to various classes of circulant graphs.

Hubert Grochowski’s research was funded by the Warsaw Uni-
versity of Technology within the Excellence Initiative: Research
University (IDUB) programme.
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Weak and strong local irregularity of digraphs
I. Grzelec®, A. Onderko®, M. Wozniak()

(1) AGH University of Krakow, Krakow, Poland
(2) p.J. Safarik University, Kosice, Slovakia

Local Irregularity Conjecture states that every connected
graph, except special cacti, can be decomposed into at most three
locally wrregular graphs, i.e., graphs in which adjacent vertices
have different degrees [1, 2|. The notion of local irregularity was
defined for digraphs in several different ways. At the beginning of
this talk we present the already known concepts of local irregu-
larity for digraphs with motivations, main conjectures and known
results. Then we introduce the following new methods of defining
a locally irreqular digraph. The first one, weak local irreqularity,
is based on distinguishing adjacent vertices by indegree-outdegree
pairs, and the second one, strong local irregularity, asks for differ-
ent balanced degrees (i.e., difference between the outdegree and
the indegree of a vertex) of adjacent vertices. For both of these
irregularities, we define locally irregular decompositions and col-
orings of digraphs. We also provide related conjectures on the
minimum number of colors in weak and strong locally irregular
colorings and support them with new results for various classes
of digraphs.
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Majority Additive Coloring

Mateusz Kamyczura(l)

(1) AGH University, Cracow, Poland

Majority additive coloring is a type of coloring where each
vertex is assigned a number, and the sum of its neighbors’ num-
bers, called the neighbor sum, is then computed. For the coloring
to be valid, in the neighborhood of each vertex, at most half of
its neighbors can share the same neighbor sum. Therefore, ma-
jority additive coloring is a combination of two known problems:
additive coloring and majority coloring. The majority additive
chromatic number, denoted by X.mac(G), is the smallest number
of colors required to achieve a majority additive coloring of G.
We present several results regarding x.,q. for different types of
graphs. For complete graphs and cycles, we have determined the
exact value of the parameter, while for trees, we have found a
tight upper bound. The main result of this work shows that for
graphs with girth greater than 5, a sufficiently large maximum
degree, and a minimum degree close to the maximum degree, it
is sufficient to use only the numbers 1 and 2.
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Odd coloring of k-trees
M. Kashima®, K. Ozeki®

1) Keio University, Yokohama, Japan
(2) Yokohama National University, Yokohama, Japan

For a graph G, an odd coloring of GG is a proper coloring
such that every non-isolated vertex v has a color ¢ such that
lo™'(c) N N(v)] is an odd integer. A graph is said to be odd k-
colorable if it admits an odd coloring with at most k& colors. This
notion was introduced by Petrugevski and Skrekovski [2] in 2022,
where they investigated odd coloring of planar graphs.

In this talk, we focus on odd coloring of k-trees. For a positive
integer k, a graph which is obtained from Kj ., by recursively
adding a vertex which is joined to a clique of order k is called a
k-tree. For any k > 1, it is easy to see that there are infinitely
many k-trees that are not odd (k + 1)-colorable. On the other
hand, according to a result by Cranston et al. [1], it follows that
every graph of tree-width at most k is odd (2k + 1)-colorable,
and hence every k-tree is odd (2k+1)-colorable. We improve this
bound by showing that every k-tree is odd (k + 2 |log, k| + 3)-
colorable. Furthermore, when k£ = 2, 3, we show that every 2-tree
is odd 4-colorable and that every 3-tree is odd 5-colorable, both
of which are tight bounds. In particular, since every maximal
outerplanar graph is a 2-tree, this implies that every maximal
outerplanar graph is odd 4-colorable.
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Line graph orientations and list edge colorings
of regular graphs

G. Gutowski®, J. Kozik™, B. Podkanowicz(!)
) Jagiellonian University, Krakow, Poland

The List Edge Coloring Conjecture states that for any graph
G, the list chromatic index ch/(G) equals the chromatic index
X' (G). A major breakthrough toward resolving this conjecture
was Galvin’s proof that it holds for bipartite graphs. It is natural
to consider extending his coloring procedure to general graphs
by decomposing them into bipartite subgraphs. However, such
decompositions turn out to be incompatible with the method.

In 1996, Kahn proved that the conjecture holds asymptoti-
cally, establishing an upper bound of \'(G) + o(X'(G)). A later
refinement by Hiaggkvist and Janssen, yielding a bound of x/(G)+
O(X'(G)?/3), relies on the Alon-Tarsi polynomial method. This
approach derives bounds from the existence of specific orienta-
tions of the line graph. Interestingly, such orientations can be
constructed from those of bipartite subgraphs arising from natu-
ral decompositions. Therefore, any improvement of the result for
bipartite graphs could potentially enhance the general bounds.
Unfortunately, no such bipartite-specific improvements are cur-
rently known.

In this work, we explore this approach and present partial
results on coloring line graphs of complete multipartite graphs.
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List distinguishing index of graphs

Jakub Kwasny™®), Marcin Stawiski(")

(1) AGH University of Krakow

An edge colouring of a graph is called distinguishing if there is
no non-trivial automorphism which preserves it. Distinguishing
colourings gained quite a lot of attention since 1990s, and are still
extensively studied. The most notable recent result in this area
is the confirmation by Babai of the Infinite Motion Conjecture
proposed by Tucker.

The talk will be about the list variant of this problem. We
will present a general bound of A(G) —1 for all connected graphs
apart from some classified exceptions. This bound is optimal and
it matches the best known bound for non-list colourings.

Then, we will discuss an improvement of the result of Lehner,
Pilsniak, and Stawiski, which states that there is a distinguishing
3-edge-colouring of any connected regular graph except K,. We
prove that every at most countable, finite or infinite, connected
regular graph of order at least 7 admits a distinguishing edge
colouring from any set of lists of length 2.
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On the Orbital Chromatic Polynomial

Klaus Dohmen), Mandy Lange-Geisler(®

(1) Mittweida University of Applied Sciences, Mittweida, Germany
(2) Mittweida University of Applied Sciences, Mittweida, Germany

The orbital chromatic polynomial, introduced by Cameron
and Kayibi in 2007, counts the number of proper A-colorings of a
graph modulo a group of symmetries. The polynomial has been
investigated for specific graphs, including the Petersen graph,
complete graphs, null graphs, paths, and cycles of small length.
So far, no general formula for the orbital chromatic polynomial
of the n-cycle for arbitrary n has been established.

In this talk we present such formula for the group of rotations
and the full automorphism group of the n-cycle. As a side result,
we obtain a new proof of Fermat’s little theorem.
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Colouring cubic multipoles
R. Lukotka™®
(1) Comenius University, Bratislava, Slovakia

To study 3-edge-uncolourability of a cubic graph one can take
a cut containing k£ edges and split the graph into two graph parts,
called cubic k-poles. Each 3-edge-colouring of a k-pole induces a
k-tuple of colours on the dangling edges, called boundary colour-
ing. All colourings of the k-pole induce a (multi)set of bound-
ary colourings, called colouring set. A colouring set contains
only colourings satisfying parity lemma and the set has to be
closed under Kempe switches. For £ < 5 these two conditions
are not only necessary but also sufficient. We will focus on the
case where £ = 6. We introduce a new equivalence relation that
greatly reduces the number of colouring sets one needs to con-
sider. We present the results of computational experiments using
this equivalence relation.

For planar graphs Four Colour Theorem can be used to re-
strict colouring sets of k-poles. We show that certain generalised
flow polynomials are an efficient tool to capture the number of
colourings with given boundary. We explore conditions that Four
Colour Theorem imposes on the polynomial and study k-poles
that are close to “refuting” the Four Colour Theorem with re-
spect to their polynomial coefficients.
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Sufficient forbidden immersion conditions for
graphs to be 7-colorable

S. Maezawa(!)
(1) Nihon University, Tokyo, Japan

A graph H is an immersion of a graph G if there exist an
injective function f; : V(H) — V(G) and a mappign fo from the
edges of H to paths of G satisfying that

e for uv € E(H), fo(uv) is a path connecting fi(u) and fi(v)
and

o for edges e, ¢’ € E(H) with e # €', fao(e) and fo(€') are
pairwise edge-disjoint.

In analogy with Hadwiger’s conjecture, Abu-Khzam and Langston
[1] proposed the follwoing conjecture : every graph with no K, as
an immersion is (¢ — 1)-colorable. Lescure and Meyniel [2] proved
the conjecture for ¢t = 5,6 and DeVos, Kawarabayashi, Mohar,
and Okamura [3] proved the conjecture for ¢ = 7. In this talk, we
discuss the conjecture for ¢t = 8.
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Erdds-Poésa property of cycles that are far
apart

Piotr Micek)
) Jagiellonian University, Krakéw, Poland

We prove that there exist functions f and g such that for all
nonnegative integers k and d, for every graph G, either G contains
k cycles such that vertices of different cycles have distance greater
than d in G, or there exists a subset X of vertices of G, with
|X| < f(k) such that G— Bg(X, g(d)) is a forest, where Bg(X, )
denotes the set of vertices of G’ having distance at most r from a
vertex of X.
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Edge-uncoverability by four perfect matchings
in cubic graphs

Makuochukwu Felix Oguagbaka(!)| Robert Lukotka(!)

(1) Comenius University, Bratislava, Slovakia

Several longstanding conjectures in graph theory, including
the Cycle Double Cover Conjecture, can be reduced to the case
of cubic graphs. A notable parameter in this context is the perfect
matching index of a cubic graph, defined as the minimum number
of perfect matchings needed to cover its edges. In particular, if
these conjectures hold for cubic graphs with perfect matching
index at least 5, they hold in general.

In this talk, we introduce several invariants that capture how
far a cubic graph G is from being coverable by four perfect match-
ings. One such invariant is the four perfect matching defect of G,
denoted by dpy(G), defined as the minimum number of edges
of G not covered by four perfect matchings. Another is the four
matching cover defect of G, denoted by dy(G), defined as the
minimum sum of defects of matchings over all matching covers of
G containing four matchings, where the defect of a matching is
half of the number of vertices it leaves uncovered. We prove that
dy(G) < dppy(G). Furthermore, we show that for each integer
k, there exists a cubic graph with dy(G) = dpy(G) = k; that
is, there are cubic graphs that are far from being coverable by
four perfect matchings. We also present another family of cubic
graphs, in which, for each integer k, there exists a cubic graph

Beyond offering new perspectives on the structure of cubic
graphs, we also demonstrate that such measures yield partial
results toward resolving these famous conjectures.
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List extensions of majority edge colourings
P. Pekata™), J. Przybyto™®)
(1) AGH University, Cracow, Poland

A majority edge colouring of a graph G is a colouring of the
edges of G such that for each vertex v of GG, at most half the
edges incident with v have the same colour. More generally, for a
natural number k > 2, a 1/k-majority edge-colouring of a graph
is a colouring of the edges of GG such that for every colour ¢ and
every vertex v of G at most 1/k of the edges incident with v
have the colour c¢. This notion was introduced in 2023 by Bock,
Kalinowski, Pardey, Pilsniak, Rautenbach and Wozniak [1].

We investigate possible list extensions of generalised majority
edge colourings. In particular, given a graph G, a list assignment
L and a majority tolerance o € (0,1), an a-magjority L-colouring
of G is a colouring w : £ — C from the given lists such that for
every v € V and each ¢ € C, the number of edges coloured ¢ which
are incident with v does not exceed « - d(v). We discuss some
restrictions necessary to extend this notion to a more general
setting with diversified & = «a(c) majority tolerances for distinct
colours ¢ € C. In particular, for any list assignment L : E — 2¢
with 37 ;) @(c) = 14+¢€ and |L(e)| < £ for each edge e, we show
that there exists an a-majority L-colouring of GG, provided that
5(G) = Q(rPe2).
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Soft Happy Colouring
Mohammad H. Shekarriz(!)

(1) School of Information Technology, Deakin University, Burwood
3125, VIC, Australia

For a coloured graph G and 0 < p < 1, a vertex v is p-
happy if at least p deg(v) of its neighbours share its colour. The
soft happy colouring problem seeks a colouring ¢ that extends
a given precolouring and maximises the number of p-happy ver-
tices [3]. This NP-hard problem is closely linked to community
detection in graphs. For example, for a graph in the stochas-
tic block model (SBM) and for suitable p, with high probability,
complete soft happy colourings can be achieved by the planted
community structure [1]. Moreover, for 0 < p; < py < 1, com-
plete pa-happy colourings achieve higher detection accuracy than
complete p;-happy colourings, and when p surpasses a critical
threshold, it is unlikely to find a complete p-happy colouring
with near-equal class sizes [2|. Finally, we survey existing al-
gorithms and propose novel heuristic, local search, evolutionary,
metaheuristic, and matheuristic approaches that enhance solu-
tion quality for soft happy colouring.
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List strong edge-colouring
B. Luzar(M) | E. Macajova®, R. Sotak®), D. Svecova(®

(1) Faculty of Information Studies, Novo mesto, Slovenia.
(2) Comenius University, Bratislava, Slovakia.
(3) Pavol Jozef Saférik University, Kosice, Slovakia.

A strong edge-coloring of a graph is an edge-coloring in which
every color class is an induced matching. The least number of
colors needed for a strong edge-coloring of a graph is the strong
chromatic indez.

We consider the list version of the coloring and prove that
the list strong chromatic index of graphs with maximum degree
3 is at most 10. This bound is tight and improves the previous
bound of 11 colors ([1]).

Next, we consider graphs with maximum degree 4, where the
best known bound for the list strong edge-coloring is 22 ([2]).
We improve this result and establish an upper bound of 21 for
the strong list chromatic index of subquartic graphs. Since there
exist subquartic graphs whose strong chromatic index is 20, our
bound is only one above the best possible.
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Irreducibility in distinguishing colourings
M. Stawiski(!
(1) AGH University, Krakow, Poland

We investigate the role of the Axiom of Choice and its weaker
forms in distinguishing and proper colourings. In particular, we
formulate conditions equivalent to AC in terms of such colourings
in both vertex and edge variants. Moreover, we study the notion
of irreducible distinguishing colourings, i.e. distinguishing colour-
ings such that no two non-empty classes of colours may be merged
to obtain another distinguishing colourings. One may view such
as distinguishing colourings for which no colour is abundant.
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Normal edge coloring
I. Fabrici®, B. Luzar®, E. Macajova®, R. Sotak™®), D. Svecova(!)

(1) P.J. Safarik University, Kosice, Slovensko
(2) Faculty of Information Studies, Novo mesto, Slovenia
(3) Comenius University, Bratislava, Slovakia

A normal edge coloring of a cubic graph is a proper edge
coloring, in which every edge is adjacent to edges colored with
four distinct colors or to edges colored with two distinct colors.
It is conjectured that 5 colors suffices for a normal edge coloring
of any bridgeless cubic graph and this statement is equivalent to
the Petersen Coloring Conjecture. Currently, we only know that
any cubic graph admits a normal edge coloring with at most 7
colors.

We present new results regarding the normal coloring of spe-
cial graph classes. In the second part, we introduce the study of
the list version of the normal edge coloring. It turns out to be
more restrictive and consequently more colors are needed. In par-
ticular, we show that there are cubic graphs which need at least
9 colors for a list normal edge coloring and there are bridgeless
cubic graphs which need at least 8 colors.
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Quasi-majority neighbor sum distinguishing
edge-colorings

R. Kalinowski®, M. Pilsniak™®), E. Sidorowicz(?), E. Turowska(?

(1) AGH University of Krakow, Krakow, Poland
(2) University of Zielona Gora, Zielona Goéra, Poland

An edge-coloring ¢ of a graph G defines in a natural way a
vertex-coloring 0. : V(G) = N by 0.(v) = >, oy, c(vu) for
each v € V(G). The edge-coloring c is called neighbor sum dis-
tinguishing if o.(u) # o.(v) for every uv € E(G). This type
of edge-coloring is related to the 1-2-3 Conjecture, proved by
Keusch [1].

We study neighbor sum distinguishing edge-coloring under
additional local constraint, requiring the edge-coloring to be quasi-
majority. A k-edge-coloring of G is called quasi-majority if for

every v € V(G) and every « € [k], at most {@-‘ edges incident

to v are colored with a.

A k-edge-coloring of G is called quasi-majority neighbor sum
distinguishing if it is quasi-majority and neighbor sum distin-
guishing. The smallest & for which G admits such a coloring is
denoted by X%M(G). A graph is nice if it has no component iso-

morphic to K. We show that X%M(G) < 12 for every nice G.
This bound improves to 6 for nice bipartite graphs and to 7 for
nice graphs of maximum degree at most four. Moreover, we de-
termine the exact value of X%M(G) for complete graphs, complete
bipartite graphs, and trees.
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Odd independent sets and strong odd colorings
of graphs
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We say that an S C V(G) is an odd independent set in graph
G if it is independent (induces no edges) and every vertex in
V'\ S is adjacent either to no vertex of S or to an odd number of
vertices of S. The largest cardinality of such a set is termed the
odd independence number of G.

A strong odd coloring of G is a partition of the vertex set into
odd independent sets; the corresponding parameter (minimum
number of colors) is called strong odd chromatic number.

Beside many results concerning these notions, we also offer a
large number of open problems for future research.
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On high-girth high-chromatic subgraphs of
Burling graphs

Seth Pettie()), Gabor Tardos(?), Bartosz Walczak®)

(1) University of Michigan, Ann Arbor, USA
() HUN-REN Rényi Institute, Budapest, Hungary
(3) Jagiellonian University, Krakow, Poland

A well-known conjecture of Erdés and Hajnal asserts that for
any g and k, there is a finite number f(g, k) such that every graph
with chromatic number at least f(g, k) contains a subgraph with
girth at least g and chromatic number at least k. Rodl (1977)
proved the conjecture for g = 4, in particular showing that f(4, k)
is bounded from above by a tower of ks of height O(k? log k). The
conjecture remains open for g > 5.

A construction of triangle-free high-chromatic graphs due to
Burling (1965) was used in the last decade to provide counterex-
amples to several conjectures and was shown to have various
unexpected properties. We show that while Burling graphs do
satisfy the aforesaid Erdés-Hajnal conjecture, they provide the
first non-trivial lower bound on the growth of f(g,k). Specifi-
cally, if T'(k) denotes the tower of 2s of height k, we prove that
the Burling graph with chromatic number 7'(k — O(1)) has no
subgraph with girth 5 and chromatic number at least k, showing
that f(5,k) > T(k — O(1)).

A key tool for the proof is a combinatorial game in which two
players, Builder and Chooser, alternate turns to build a graph
vertex by vertex as follows: Builder introduces a new vertex
with edges to all previous vertices and then partitions the en-
tire edge set into two subsets, after which Chooser deletes one
of the two subsets. Builder attempts to build a clique of size
k, while Chooser attempts to prevent that. We prove upper and
lower bounds of the form 7'(k+O(1)) on how many turns Builder
needs to guarantee a k-clique.
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Some recent results on modular product

Iztok Peterin(1:2)

(1) Faculty of Electical Engineering and Computer Science, University
of Maribor
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A product of two graphs G and H has a vertex set V(G) x
V(H). For edges, we consider three objects in every factor for
the definition of an edge in a product: either a vertex or an
edge or a non-edge. Combining the mention objects from one
factor with the same objects in the other factor gives eight dif-
ferent possibilities (notice that vertex by vertex must be ignored
to avoid loops) to have an edge or a non-edge in a product. So,
all together 28 = 256 different graph products exists and four of
them—Cartesian GUH, strong G X H, direct G x H and lexi-
cographic G o H—gain a special status and are called standard
products.

Among all graph products only 10 are associative and com-
mutative. We join them into pairs of a product G *x H together

with its complementary product GxH G « T where G is the
complement of a graph G. Six of them represent either a stan-
dard product (Cartesian, strong or direct) or its complementary
product, next two are empty and complete product and finally
modular product G ¢ H, where E(G ¢ H) = E(GOH) U E(G x
H)U E(G x H), and its complementary product.

We present several recent results on distance [2], domination
number [1] and independence sets of modular products with re-

spect to some properties of their factors.
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Integrity of grids
J. Kozik®, A. Zak(®

(1) AGH University, Krakow, Poland
(2) AGH University, Krakow, Poland

The integrity of a graph G = (V| E) is defined as the smallest
sum | S| +m(G —S), where S is a subset of the set V', and m(H)
denotes the order of the largest component of the graph H.

Benko, Ernst, and Lanphier provided and proved an asymp-
totic bounds for planar graphs in terms of the order of the graph.
We prove asymptotic results concerning two-dimensional grid-
graphs.
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Construction of k-matchings in graph products

Anna Lindeberg™, Marc Hellmuth()

(1) Dept. of Mathematics, Stockholm University, Sweden

The study of classical graph invariants—such as chromatic, dom-
ination, and independence numbers—in graph products has re-
ceived significant attention. Here, we focus on variations of match-
ings in the four standard graph products: Cartesian, strong, di-
rect and lexicographic. Specifically, we define a subset M C E of
a graph G = (V| F) as a k-matching if the edges in M induce a
k-regular subgraph of G.

Summarizing results in [1], we present explicit constructions
of k-matchings in graph products G x H, utilizing kg-matchings
Mg and kg-matchings My from the factor graphs G and H.
Although these constructions do not always yield maximum k-
matchings for the product, they achieve the largest possible size
among all k-matchings that are weak-homomorphism preserving
— meaning that matched edges in the product never project onto
unmatched edges in the factors.
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Planar and polyhedral graphs as Kronecker
and Sierpiniski products

R. Maffucci®), R. De March®

(1) Universita di Torino, Italy
(2) Data scientist, Torino, Italy

We will discuss graph products that are planar/polyhedral.
The first part of the talk focuses on the Kronecker (direct, tensor)
product [2], Figure 1. We also consider simultaneous products [3].

The second part of the talk |4] is on the Sierpinski product,
recently introduced in [1].

Figure 1: Illustrations of a planar (left) and a non-planar (right)
factor for planar, 3-connected Kronecker products.
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Group distance magic cubic graphs
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A T-distance magic labeling of a graph G = (V| E) with
|[V| = n is a bijection ¢ from V' to an Abelian group I' of or-
der n, for which there exists u € T', such that the weight w(x) =
> yen) L(y) of every vertex x € V is equal to . In this case,
the element p is called the magic constant of G. A graph G is
called a group distance magic if there exists a I'-distance magic
labeling of G for every Abelian group I' of order n.

In this talk, we focus on cubic I'-distance magic graphs as well
as some properties of such graphs.

This work was partially supported by program "Excellence initiative
— research university” for the AGH University.
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According to a nonstandard definition introduced in 2021,
a distance magic labeling ¢ of a regular graph of order n is a
bijection from its vertex set to the set of integers of the arithmetic
progression from 1 —n to n — 1 with common difference 2, such
that the sum of the labels of the neighbors of each vertex is zero.
Such a labeling is called self-reverse if, for any pair of vertices u
and v, u is adjacent to v if and only if the vertices with labels
—{(u) and —¢(v) are adjacent.

In this talk, we present the motivation for studying self-reverse
distance magic labelings. We focus on self-reverse distance magic
labelings in the case of tetravalent graphs providing several exam-
ples and a complete classification of all orders for which a tetrava-
lent graph admitting such a labeling exists. The classification is
obtained via a novel construction that produces a (tetravalent)
distance magic graph from two given (tetravalent) distance magic
graphs. We also discuss the existence of graphs admitting a self-
reverse distance magic labeling among some well-known families
of tetravalent graphs.
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Pushing for Irregularity
D. Rautenbach®, L. Schwartze), F. Werner(®)
(1) Ulm University, Ulm, Germany

Let G be a simple graph with maximum degree A(G) and
no component of order 2. Bensmail, Marcille, and Orenga |[1]
introduce the notion of a pushing scheme p : V(G) — Ny with
induced edge labeling

(:EG) =N, uv— 1+ plu)+ pv).

p should be chosen such that the induced vertex labeling

is a proper vertex coloring. Bensmail et al. conjecture that such
a

p:V(G)—{0,1,...,A(G)} exists for every graph G. We prove
their conjecture for a few graph classes [2].
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On rainbow caterpillars

S. Cichacz(!), B. Stolowska), M. Wozniak®)

(1) AGH, Krakow, Poland

Given a finite Abelian group (A, +), consider a tree 7" with
|A| vertices. The labeling f: V(T) — A of the vertices of some
graph G induces an edge labeling in GG, thus the edge uv receives
the label f(u) + f(v). The tree T is A-rainbow colored if f is a
bijection and edges have different colors. In this paper, we give
necessary and sufficient conditions for a caterpillar with three
spine vertices to be A-rainbow, when A is an elementary p-group.
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Zombies on the Grid

Omer Angel), Pawel Pratat(®), Peter Winkler(®

(1) University of British Columbia, Vancouver, BC, Canada
(2) Toronto Metropolitan University, Toronto, ON, Canada
) Dartmouth, Hanover, NH, USA

In Zombies and Survivors, a set of zombies attempts to eat
a lone survivor, Mindy, loose on a given connected graph. The
zombies randomly choose their initial location, and during the
course of the game, move directly toward Mindy. At each round,
they move to the neighbouring vertex that minimizes the distance
to Mindy; if there is more than one such vertex, then they choose
one uniformly at random. Mindy attempts to escape from the
zombies by moving to a neighbouring vertex or staying on her
current vertex. The zombies win if eventually one of them eats
Mindy by landing on her vertex; otherwise, Mindy wins. The
zombie number z(G) of a graph G is the minimum number of
zombies needed to play such that the probability that they win
is at least 1/2.

In this paper, we investigate the game played on toroidal
grids C,,0JC,,. In particular, we show that asymptotically almost
surely z(C,0C,) = Q(n/log®n) for some constant ¢ and that
2(C,0C,) = O(n®/?).
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Algebraic relations for permutons
0. Angel®, F. Skerman®, P. Winkler®)

(1) UBC, Vancouver, Canada
(2) Uppsala niversity, Uppsala, Sweden
() Dartmouth, Hanover, US

Permutons have emerged as a highly successful method for
studying structure and certain properties of large permutations.
In particular they are closely related to pattern densities. How-
ever, they are lacking when considering algebraic properties of
the permutations such as cycle structure, order, and permuta-
tion compositions. We investigate what can still be said about
products of permutations in the permuton limit.
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On random regular graphs and the Kim-Vu
Sandwich Conjecture

Natalie Behague("), Daniel I’kovic(®), Richard Montgomery!)

(1) University of Warwick, Coventry, UK
@) Leipzig University, Leipzig, Germany

The random regular graph G4(n) is selected uniformly at ran-
dom from all d-regular graphs on n vertices. This model is a lot
harder to study than the Erd&s-Renyi binomial random graph
model G(n, p) as the probabilities of edges being present are not
independent. However, in the regime d > logn, various graph
properties including Hamiltonicity and chromatic number were
shown (with hard work) to be the same in G4(n) as in G(n,p)
with np = d. This inspired Kim and Vu |2] to conjecture that
when d > logn it is possible to ‘sandwich’ the random regular
graph Gy4(n) between two Erdds-Renyi random graphs with sim-
ilar edge density. A proof of the conjecture would immediately
imply many results about monotone graph properties of Gy(n)
in this dense regime, and would unify all the previous separate
hard-won results.

Various authors have proved weaker versions of this conjecture
with incrementally improved bounds on d. The previous state of
the art was due to Gao, Isaev and McKay [1] who proved the
conjecture for d > log*n/(loglogn)?. I will talk about our new
improvement of this result.
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Packing edge-disjoint copies of a fixed graph in
the random geometric graph

P. Bennett®), R. Cushman®, A. Dudek®, X. Pérez-Giménez®)
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(2) University of Tennessee, Knoxville, Knoxville, USA
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Fix a graph H. Can we cover almost all the edges of a d-
dimensional random geometric graph with edge-disjoint copies of
H? Perhaps surprisingly, we will see that for some choices of H,d
the answer is “no,” even if the random geometric graph is dense.
We also show that the answer is “yes” for many choices of H,d.
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Connectivity thresholds for superpositions of
Bernoulli random graphs

M. Bloznelis™)
(1) Vilnius University, Vilnius, Lithuania

Let Gy, ..., G,, be independent identically distributed Bernoulli
random subgraphs of the complete graph IC,,. For k =1,2,..., we
show the k-connectivity threshold as n,m — +oo for the union
graph U G, defined on the vertex set of ,,. For k = 2,3,...
we observe two different threshold behaviors: one for the unions
of cliques and the other one for the (remaining) case where each
G, has a vertex of degree 1 with positive probability. Results for
the case k = 1 have been reported in |1, 2|.
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Loose paths in random ordered hypergraphs

Andrzej Dudek®

(1) Western Michigan University

Consider the random r-uniform hypergraph H = H)(n,p).
An ordered loose path is a sequence of edges F1, Fs, ..., Ey of H
such that max{j € E;} = min{j € E;;1} for 1 <i < {. In this
talk we establish fairly tight bounds on the length of the longest
ordered loose path in H that hold with high probability.

This is a joint work with Alan Frieze and Wesley Pegden.

126



Sharp Thresholds Imply Circuit Lower Bounds

D. Gamarnik®)

(1) MIT, Cambridge, US

We show that sharp thresholds for Boolean functions imply
circuit lower bounds. More formally we show that any Boolean
function exhibiting a sharp enough threshold at an arbitrary
threshold cannot be computed by Boolean circuits of bounded
depth and polynomial size. This verifies a conjecture put for-
ward earlier in the survey by Kalai and Safra. Our result is of
particular interest in the sparse random graph setting where the
main tool for bounding circuit depth, namely Linial-Mansour-
Nisan (LMN) theorem does not apply. We redeem the power of
LMN theorem by creating simple dense-to-sparse circuit gadgets.
Our result will be illustrated using two models: independent sets
in sparse random graphs and random 2-SAT model.

Joint work with Elchanan Mossel (MIT) and Ilias Zadik (Yale
University).
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Preferential attachment trees with vertex death
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Preferential attachment models are a popular class of random
graphs that have received a wealth of attention in the last decades
and are often used to model evolving networks. In such models,
new vertices are added to the graph sequentially and new vertices
are more likely to make connections with existing vertices that
have a large degree.

In recent work, we study a general preferential attachment
model where vertices can both be added but can also be ‘killed’.
Such killed vertices can no longer make new connections, whereas
‘alive’” vertices continue to make new connections. This models
evolving networks that can both increase as well as decrease in
size.

We focus on persistence of the maximum degree: are the oldest
alive vertices also the ones with largest degree? We uncover a
novel regime in which killing of vertices makes such persistence
entirely impossible.
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Hitting times and the power of choice for
random geometric graphs

D. Ignasiak!), L. Lichev(!)
(1) Technical University of Vienna, Vienna, Austria

We consider a random geometric graph process where random
points (X;);>; are embedded consecutively in the d-dimensional
unit torus T? and every two points at distance at most r form
an edge. As r — 0, we confirm that well-known hitting time
results for k-connectivity (with k& > 1 fixed) and Hamiltonicity
in the Erd&s-Rényi graph process also hold for the considered
geometric analogue. Moreover, we exhibit a sort of probabilistic
monotonicity for each of these properties.

We also study a geometric analogue of the power of choice
where, at each step, an agent is given two random points sam-
pled independently and uniformly from T? and has to add exactly
one of them to the already constructed point set. When the agent
is allowed to make their choice with the knowledge of the entire
sequence of random points (offline 2-choice), we show that they
can construct a connected graph at the first time ¢ when none
of the first ¢ pairs of proposed points contains two isolated ver-
tices in the graph induced by (X;)?,, and maintain connectivity
thereafter. We also derive analogous results for k-connectivity
and Hamiltonicity. This shows that each of the said properties
can be attained two times faster (time-wise) and with four times
fewer points in the offline 2-choice process compared to the 1-
choice process.

In the online version where the agent only knows the pro-
cess until the current time step, we show that k-connectivity and
Hamiltonicity cannot be significantly accelerated (time-wise) but
may be realised on two times fewer points compared to the 1-
choice analogue.
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Recovery of spatial vertex features in noisy
SPA model graphs

Jordan Barrett(!), Jeannette Janssen™, Aaron Smith(®)

(1) Dalhousie University, Halifax, Canada
(2) University of Ottawa, Ottawa, Canada

The graph matching problem is that of identifying vertices in
two graphs that are independent perturbations of a single random
graph. Inspired by an approach recently introduced in a paper
by Liu and Austern [1], we consider graphs generated via a ge-
ometric random graph model. In particular, features associated
with each vertex can be interpreted as giving the spatial position
of the vertex, and the formation of the graph is informed by the
positions of the vertices. Noisy versions of the vertex features
are assumed to be given; an important step in graph matching
is then that of estimating the true positions of the vertices. We
apply this approach to the spatial preferential attachment (SPA)
model [2], which generates sparse spatial graphs with a power
law degree distribution. We propose a two-step approach to es-
timating the spatial positions of the vertices, and derive bounds
on the noise parameters under which our method is an efficient
estimator for the positions.
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On the threshold for random triangulations
inside large convex polygons

Brett Kolesnik®)

(1) University of Warwick, Coventry, United Kingdom

Start with a convex polygon and then add a random graph of
edges inside. We will discuss some results concerning the critical
point at which a triangulation of the polygon emerges. Joint
work with Georgii Zakharov (Oxford) and Maksim Zhukovskii

(Sheffield).
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Monochromatic matchings in almost-complete
and random hypergraphs

Lior Gishboliner™, Stefan Glock(®), Peleg Michaeli(®,
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(1) University ot Toronto, Canada
(2) University of Passau, Germany
(3) University of Oxford, UK

The Ramsey number for matchings in graphs was determined
by Cockayne and Lorimer [1] and later extended to hypergraphs
by Alon, Frankl, and Lovasz |2], who showed that every g-colouring
of the complete r-uniform hypergraph on n vertices contains a
monochromatic matching of size [((n+q¢—1)/(r+q—1))].

In this talk I will present two extensions of this classical re-
sult. The first is a defect version, which asserts that every
g-colouring of an almost-complete uniform hypergraph contains
a monochromatic matching of comparable size to that in the
complete case. The second is a transference principle, which
demonstrates that a monochromatic matching of comparable size
exists, with high probability, in any ¢-colouring of a sparse, ran-
dom uniform hypergraph with sufficiently large constant average
degree.

The proofs combine methods from extremal set theory with
a variant of the weak hypergraph regularity lemma.
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Homogeneous substructures in random ordered
uniform matchings

Andrzej Rucinski®

(1) Adam Mickiewicz University, Poznan, Poland

An ordered r-uniform matching of size n is a collection of n
pairwise disjoint r-subsets (edges) of a linearly ordered set of rn
vertices. For n = 2, such a matching is called an r-pattern, as it
represents one of %(2:) ways two disjoint edges may intertwine.
Given a set P of r-patterns, a P-clique is a matching with all
pairs of edges belonging to P.

I will present recent results determining asymptotically the
largest size of a P-clique in a random ordered r-uniform match-
ing, for several classes of sets of patterns P. This is joint work
with A. Dudek, J. Grytczuk, and J. Przybyto.
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3-colourability, diamonds and butterflies

Nadzieja Hodur™, Monika Pilsniak®), Magdalena Prorok(),
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(1) AGH University of Krakow, Krakow, Poland
(2) TU Bergakademie Freiberg, Freiberg, Germany

The 3-colourability problem is an NP-complete problem which
remains NP-complete for graphs with maximum degree four, for
claw-free graphs, and even for (claw,diamond)-free graphs. In
this talk we will consider induced subgraphs, among them are
the claw (Ki3), the diamond (the graph K, — e), the butterfly
(two triangles sharing a vertex), and the generalized net N; ;. (a
triangle with three attached paths with 4, j, k edges).

Our main result is a complete characterization of all 3-colourable
(claw, diamond, H)-free graphs for H € {Ny 11, N112, N122, Naos}.
We will present a description of all non 3-colourable
(claw, diamond, H)-free graphs for H € {N111, N112, N122, Nooo}
in terms of butterflies. Moreover, we will show extensions of this
characterization to larger graph classes.
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On Myecielskians of digraphs
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Let D be a digraph on vertices vy, ..., v,. The Mycielskian of
D, denoted M (D), is obtained from D by adding an independent
set of vertices V' = {v],...,v,} and one extra vertex z. For
every arc (v;,v;) of D, the arcs (v;,v}) and (vj,v;) are added,
and finally arcs from z to all vertices of V'’ are included. In a
natural way, a sequence of digraphs {M,(D)},> is defined by
My(D) = D, My(D) = M(D), and M,(D) = M(M,_,(D)) for
p > 2, where M,(D) is called the p-th Mycielskian of D.

For a digraph D, a set S of arcs is a feedback arc set if D—.S is
acyclic, and the minimum size of such a set is denoted by 71(D).
In this talk we focus on the parameter 71 (M,(D)), as well as on
the maximum number of arc-disjoint directed cycles in M, (D),

denoted by v1 (M, (D)), which is closely related to 7 (M,(D)).
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Two digraphs of order n are said to pack if they can be found
as edge-disjoint subgraphs of the complete digraph of order n. It
is well established that if the sum of the sizes of the two digraphs
is at most 2n — 2, then they pack, with this bound being sharp.
However, it is sufficient for the size of the smaller digraph to be
only slightly below n for the sum of their sizes to significantly
exceed this threshold while still guaranteeing the existence of a
packing.

In 1985, Wojda conjectured that for any 2 < m < n/2, if
one digraph has size at most n — m and the other has size less
than 2n — |n/m|, then the two digraphs pack. It was previously
known that this conjecture holds for m = Q(y/n). We confirm it
for m > 26.
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It is known that there is a linear dependence between the
treewidth of a graph and its balanced separator number: the
smallest integer k such that for every weighing of the vertices,
the graph admits a balanced separator of size at most k. We
investigate whether this connection can be lifted to the setting of
coarse graph theory, where both the bags of the considered tree
decompositions and the considered separators should be cover-
able by a bounded number of bounded-radius balls.

As the first result, we prove that if an n-vertex graph G admits
balanced separators coverable by k balls of radius r, then G also
admits tree decompositions 77 and 75 such that:

e in 7, every bag can be covered by O(klogn) balls of radius
r; and

e in 75, every bag can be covered by O(k? log k) balls of radius
r(logk 4 loglogn + O(1)).

As the second result, we show that if we additionally assume
that G has doubling dimension at most m, then the functional
equivalence between the existence of small balanced separators
and of tree decompositions of small width can be fully lifted to
the coarse setting.
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Constructing algebraic expressions for
lattice-structured digraphs
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We investigate relationship between algebraic expressions and
labeled two-terminal directed acyclic graphs (labeled st-dags), in
which each edge carries a unique label. An algebraic expression is
referred to as an st-dag expression if it is algebraically equivalent
to the sum of edge-label products over all spanning paths of the
st-dag. The st-dags considered here are based on lattice structure
and have m X n vertices (m rows and n columns). Examples are
shown in Figure 2: (a) grid graph G, ., (b) triangular grid T, ,,
(c) king graph K,,,. We treat m as a constant representing
the graph’s depth, while n determines its size. Our objective is
to simplify the expressions for these graphs. To this end, we
apply backtracking and decomposition methods (BM and DM,
respectively) which generate expressions for these graphs, and
we estimate the lengths of the generated expressions as functions
of n. BM produces expressions of length O (n™) for both Gy,
and T}, ,, and of exponential length in n for K,,,. In contrast,
DM yields more compact expressions: length O (n log™™* n) for
both G,,, and T,,, and length O (nlog2(4m_2)) for K n.

(a)

Figure 2: Lattice-structured digraphs.
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In this talk, we introduce a generalized version of an ear de-
composition, called a j-spider decomposition, for j-connected
star-free graphs with j > 2. Its application enables us to im-
prove a previousely known sufficient condition for the existence
of a k-tree in highly connected star-free graphs, where a k-tree
is a spanning tree in which every vertex is of degree at most k.
More precisely, we show that every j-connected K j—2)4o-free
graph has a k-tree for k > j, thereby improving a classical result
of Jackson and Wormald [1] for £ > j. Our approach differs from
previous studies based on toughness-type arguments and instead
relies on both a j-spider decomposition and a factor theorem re-
lated to Hall’s marriage theorem.

This talk is based on the paper [2].
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Let H be a digraph possibly with loops and D a digraph
without loops whose arcs are colored with the vertices of H (D is
said to be an H-colored digraph). A directed path P in D is said
to be an H-path if and only if the consecutive colors encountered
on P form a directed walk in H. An H-kernel of an H-colored
digraph D is a subset of vertices of D, say N, such that for every
pair of different vertices in N there is no H-path between them,
and for every vertex u in V(D) \ N there exists an H-path in
D from uw to N. D is said to be 3-quasi-transitive if for every
pair of vertices u and v of D, the existence of a directed path of
length 3 from u to v implies that {(u,v), (v,u)} N A(D) # 0. In
this talk we show a result regarding the existence of H-kernels
in 3-quasi-transitive digraphs; mainly the existence of H-kernels
is guaranteed by means of sufficient conditions on the directed
cycles of length 3 and 4.
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Representing Distance-Hereditary Graphs with
Trees
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Cographs are precisely the undirected graphs that can be rep-
resented by a vertex-labelled tree, that is, a pair (7', t), where T
is a rooted tree and t is a labelling of the vertices of T into the
set {0,1}. Specifically, we say that the pair (7,t) explains G if
T has leaf set V(G) and, for any two distinct vertices x and y
of G, x and y are joined by an edge in G if and only if the least
common ancestor of z and y in T has label 1 via t.

Recently 1], the class of arboreal networks was introduced as
a generalization of rooted trees. Arboreal networks are directed,
acyclic graphs whose underlying, undirected graph is a tree. Intu-
itively, they are rooted trees which can have more than one root.
This led to the question of characterizing those undirected graphs
G that can be explained by a vertex-labelled arboreal network
(N, t), in the same way cographs are explained by vertex-labelled
trees. Interestingly, this is a well known and well studied class of
graphs [2].
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