Soft Happy Colouring

Mohammad H. Shekarriz⁽¹⁾

⁽¹⁾ School of Information Technology, Deakin University, Burwood 3125, VIC, Australia

For a coloured graph G and $0 \le \rho \le 1$, a vertex v is ρ happy if at least ρ deg(v) of its neighbours share its colour. The soft happy colouring problem seeks a colouring σ that extends a given precolouring and maximises the number of ρ -happy vertices [3]. This NP-hard problem is closely linked to community detection in graphs. For example, for a graph in the stochastic block model (SBM) and for suitable ρ , with high probability, complete soft happy colourings can be achieved by the planted community structure [1]. Moreover, for $0 \le \rho_1 < \rho_2 \le 1$, complete ρ_2 -happy colourings achieve higher detection accuracy than complete ρ_1 -happy colourings, and when ρ surpasses a critical threshold, it is unlikely to find a complete ρ -happy colouring with near-equal class sizes [2]. Finally, we survey existing algorithms and propose novel heuristic, local search, evolutionary, metaheuristic, and matheuristic approaches that enhance solution quality for soft happy colouring.

References

- [1] Mohammad H. Shekarriz, Dhananjay Thiruvady, Asef Nazari, and Rhyd Lewis. Soft happy colourings and community structure of networks. *Computers & Operations Research*, 174:106893, 2025.
- [2] Mohammad H. Shekarriz, Dhananjay Thiruvady, Asef Nazari, and Wilfried Imrich. Local search improvements for soft happy colouring. *Preprint available on ArXiv: 2506.19284*, 2025.
- [3] Peng Zhang and Angsheng Li. Algorithmic aspects of homophyly of networks. *Theoretical Computer Science*, 593:117–131, 2015.