3-colourability, diamonds and butterflies

Nadzieja Hodur $^{(1)}$, Monika Pilśniak $^{(1)}$, Magdalena Prorok $^{(1)}$, Ingo Schiermeyer $^{(1,2)}$

- (1) AGH University of Krakow, Kraków, Poland
- (2) TU Bergakademie Freiberg, Freiberg, Germany

The 3-colourability problem is an NP-complete problem which remains NP-complete for graphs with maximum degree four, for claw-free graphs, and even for (claw,diamond)-free graphs. In this talk we will consider induced subgraphs, among them are the claw $(K_{1,3})$, the diamond (the graph $K_4 - e$), the butterfly (two triangles sharing a vertex), and the generalized net $N_{i,j,k}$ (a triangle with three attached paths with i, j, k edges).

Our main result is a complete characterization of all 3-colourable (claw, diamond, H)-free graphs for $H \in \{N_{1,1,1}, N_{1,1,2}, N_{1,2,2}, N_{2,2,2}\}$. We will present a description of all non 3-colourable (claw, diamond, H)-free graphs for $H \in \{N_{1,1,1}, N_{1,1,2}, N_{1,2,2}, N_{2,2,2}\}$ in terms of butterflies. Moreover, we will show extensions of this characterization to larger graph classes.

References

- [1] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a survey, **Graphs and Combinatorics** 20 (2004) 1-40.
- [2] I. Schiermeyer and B. Randerath, Polynomial χ-Binding Functions and Forbidden Induced Subgraphs: A Survey, Graphs and Combinatorics 35 (1) (2019) 1–31.