Disjoint dominating and 2-dominating sets in graphs: Hardness and Approximation results

Soumyashree Rana $^{(1)},$ Sounaka Mishra $^{(2)},$ B. S. Panda $^{(1)}$

- $^{\left(1\right)}$ Department of Mathematics, Indian Institute of Technology Delhi, India
- (2) Department of Mathematics, Indian Institute of Technology Madras, India

A set $D \subseteq V$ of a graph G = (V, E) is a dominating set of G if each vertex $v \in V \setminus D$ is adjacent to at least one vertex in D, whereas a set $D_2 \subseteq V$ is a 2-dominating (double dominating) set of G if each vertex $v \in V \setminus D_2$ is adjacent to at least two vertices in D_2 . A graph G is a DD_2 -graph if there exists a pair (D, D_2) of disjoint dominating set and 2-dominating set of G. In [1], several open problems related to DD_2 -graphs were posed. In this paper, we answers some of these problems and present the following results: we provide an approximation algorithm for the problem of determining a minimal spanning DD_2 -graph of minimum size $(MIN-DD_2)$ with an approximation ratio of 3; a minimal spanning DD_2 -graph of maximum size (MAX- DD_2) with an approximation ratio of 3; and the smallest number of edges which when added to a non- DD_2 -graph results in a minimal spanning DD_2 -graph for any graph (MIN-TO- DD_2) with an $O(\log n)$ approximation ratio. Additionally, we prove that $MIN-DD_2$ and $MAX-DD_2$ are APX-complete for graphs with maximum degree 4. Moreover, for a 3-regular graph, we show that MIN- DD_2 and MAX- DD_2 are approximable within a factor of 1.8 and 1.5 respectively.

References

[1] M.Miotk, J.Topp, and P.Żyliński. Disjoint dominating and 2-dominating sets in graphs, Discrete Optimization, 35:100553, (2020).