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For a graph G, an odd coloring of G is a proper coloring φ
such that every non-isolated vertex v has a color c such that
|φ−1(c) ∩ N(v)| is an odd integer. A graph is said to be odd k-
colorable if it admits an odd coloring with at most k colors. This
notion was introduced by Petruševski and Škrekovski [2] in 2022,
where they investigated odd coloring of planar graphs.

In this talk, we focus on odd coloring of k-trees. For a positive
integer k, a graph which is obtained from Kk+1 by recursively
adding a vertex which is joined to a clique of order k is called a
k-tree. For any k ≥ 1, it is easy to see that there are infinitely
many k-trees that are not odd (k + 1)-colorable. On the other
hand, according to a result by Cranston et al. [1], it follows that
every graph of tree-width at most k is odd (2k + 1)-colorable,
and hence every k-tree is odd (2k+1)-colorable. We improve this
bound by showing that every k-tree is odd (k + 2 ⌊log2 k⌋ + 3)-
colorable. Furthermore, when k = 2, 3, we show that every 2-tree
is odd 4-colorable and that every 3-tree is odd 5-colorable, both
of which are tight bounds. In particular, since every maximal
outerplanar graph is a 2-tree, this implies that every maximal
outerplanar graph is odd 4-colorable.
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