Extremal problems on planar graphs

E. Győri⁽¹⁾

(1) Renyi Institute of Mathematics, Budapest, Hungary

Let $\exp_{\mathcal{P}}(n, T, H)$ denote the maximum number of copies of T in an n-vertex planar graph which does not contain H as a subgraph. When $T = K_2$, $\exp_{\mathcal{P}}(n, T, H)$ is the planar Turán number of H, denoted by $\exp_{\mathcal{P}}(n, H)$. The topic of extremal planar graphs was initiated by Dowden (2016) [1]. He obtained sharp upper bound for both $\exp_{\mathcal{P}}(n, C_4)$ and $\exp_{\mathcal{P}}(n, C_5)$. In [2], we gave a sharp upper bound $\exp_{\mathcal{P}}(n, C_6) \leq \frac{5}{2}n - 7$, for all $n \geq 18$. We also pose a conjecture on $\exp_{\mathcal{P}}(n, C_k)$, for $k \geq 7$.

We [3] proved that for every integer $n \geq 6$, $\exp(n, C_5, \emptyset)$ is $2n^2 - 10n + 12 + \mathbb{1}_{n=7}$.

And (see [4]) for every fixed $k \geq 3$, $\exp(n, C_{2k}, \emptyset)$ is $n^k/k^k + o(n^k)$. In this lecture, we present more recent similar results related to cycles and paths.

References

- [1] C. Dowden. Extremal C_4 -free/ C_5 -free planar graphs. Journal of Graph Theory 83 (2016), 213-230.
- [2] D. Ghosh, E. Győri, R. R. Martin, A. Paulos, C. Xiao. Planar Turán Number of the 6-Cycle. SIAM Journal on Discrete Mathematics 36 (3) (2022), 2028-2050.
- [3] E. Győri, A. Paulos, N. Salia, C. Tompkins, O. Zamora. The maximum number of pentagons in a planar graph. J. Graph Th., 108 (2025). pp. 229-256.
- [4] Z. Lv, E. Győri, Z. He, N. Salia, C. Tompkins, X. Zhu. The maximum number of copies of an even cycle in a planar graph. J. Combinatorial Th. B, 167 (2024) 15-22.