2-Domination edge subdivision in trees

 $\underline{M. Dettlaff^{(1)}}$, M.A. Henning⁽²⁾, M. Lemańska⁽³⁾, A. Roux⁽⁴⁾, J. Topp⁽⁵⁾

- (1) University of Gdańsk, Gdańsk, Poland
- (2) University of Johannesburg, Johannesburg, South Africa
- (3) Gdańsk University of Technology, Gdańsk, Poland
- (4) Stellenbosch University, Stellenbosch, South Africa
- (5) University of Applied Sciences, Elblag, Poland

A set S of vertices in a graph G is a 2-dominating set of G if every vertex not in S has at least two neighbors in S, where two vertices are neighbors if they are adjacent. The 2-domination number of G, denoted by $\gamma_2(G)$, is the minimum cardinality among all 2-dominating sets in G. A γ_2 -set of G is a 2-dominating set of G of cardinality $\gamma_2(G)$. The 2-domination subdivision number of G, denoted by $sd_2(G)$, is the minimum number of edges which must be subdivided in order to increase the 2-domination number. If T is a tree of order $n \geq 3$, then $sd_2(T) \leq 2$. In [1] we show that $sd_2(T) = 1$ if and only if the set of vertices that belong to no γ_2 -set of G is nonempty. A graph G is γ_2 -q-critical if q is the least number such that for every subset of edges S of cardinality q, the graph produced by subdivision of S has a greater 2-domination number. If T is a γ_2 -q-critical tree of order $n \geq 3$, then we prove that $q \leq n-2$. Among other results, we characterize γ_2 -q-critical trees when q is large, namely $q \in \{n-4, n-3, n-2\}$. We also characterize γ_2 -1-critical trees [1] and γ_2 -2-critical trees [2].

References

- [1] M.Dettlaff, M.A.Henning, M.Lemańska, A.Roux, J.Topp, 2-Domination edge subdivision in trees, *Australas. J. Combin.* to appear.
- [2] M.Dettlaff, M.A.Henning, M.Lemańska, A.Roux, 2-Domination critical trees upon edge subdivision, *Australas. J. Combin.* 92(3) (2025), 357—381.