Packing designs with large block size

Andrea Burgess⁽¹⁾, Peter Danziger⁽²⁾, Daniel Horsley⁽³⁾, Muhammad Tariq Javed⁽²⁾

- (1) University of New Brunswick, Saint John, Canada
- (2) Toronto Metropolitan University, Toronto, Canada
- (3) Monash University, Melbourne, Australia

Given positive integers v, k, t and λ with $v \geq k \geq t$, a packing design $\operatorname{PD}_{\lambda}(v, k, t)$ is a pair (V, \mathcal{B}) , where V is a v-set and \mathcal{B} is a collection of k-subsets of V such that each t-subset of V appears in at most λ elements of \mathcal{B} . The maximum size of a $\operatorname{PD}_{\lambda}(v, k, t)$ is called the packing number and denoted $\operatorname{PDN}_{\lambda}(v, k, t)$.

We prove that for a positive integer n, $PDN_{\lambda}(v, k, t) = n$ whenever $nk - (t-1)\binom{n}{\lambda+1} \leq \lambda v < (n+1)k - (t-1)\binom{n+1}{\lambda+1}$. For fixed t and λ , this determines the value of $PDN_{\lambda}(v, k, t)$ when k is large with respect to v. By showing that if no point appears in more than three blocks, the blocks of a $PDN_2(v, k, 2)$ can be directed so that no ordered pair appears more than once, we also extend our results to directed packings with index $\lambda = 1$ and strength t = 2.