Isolation of graphs

Peter Borg⁽¹⁾

(1) University of Malta, Msida, Malta

Given a set \mathcal{F} of graphs, we call a copy of a graph in \mathcal{F} an \mathcal{F} -graph. The \mathcal{F} -isolation number of a graph G, denoted by $\iota(G, \mathcal{F})$, is the size of a smallest subset D of the vertex set of G such that the closed neighbourhood N[D] of D intersects the vertex sets of the \mathcal{F} -graphs contained by G (equivalently, G - N[D] contains no \mathcal{F} -graph). When \mathcal{F} consists of a 1-clique, $\iota(G, \mathcal{F})$ is the domination number of G. When \mathcal{F} consists of a 2-clique, $\iota(G, \mathcal{F})$ is the vertex-edge domination number of G. The study of the general \mathcal{F} -isolation problem was introduced by Caro and Hansberg [4] in 2017. This study is expanding very rapidly. A brief account of its development and of the speaker's recent work in this field [1, 2, 3] will be provided.

References

- [1] P.Borg, Isolation of regular graphs, stars and k-chromatic graphs, arXiv:2303.13709 [math.CO].
- [2] P. Borg, Isolation of regular graphs and k-chromatic graphs, *Mediterr. J. Math.* 21 (2024) paper 148.
- [3] P. Borg, Proof of a conjecture on isolation of graphs dominated by a vertex, *Discrete Appl. Math.* 371 (2025) pp.247-253.
- [4] Y.Caro, A.Hansberg, Partial domination the isolation number of a graph, *Filomat* 31 (2017) pp.3925-3944.